HuggingGraph: Understanding the Supply Chain of LLM Ecosystem
- URL: http://arxiv.org/abs/2507.14240v2
- Date: Sat, 02 Aug 2025 23:22:07 GMT
- Title: HuggingGraph: Understanding the Supply Chain of LLM Ecosystem
- Authors: Mohammad Shahedur Rahman, Runbang Hu, Peng Gao, Yuede Ji,
- Abstract summary: Large language models (LLMs) leverage deep learning architectures to process and predict sequences of words based on context.<n>LLMs demand extensive computational resources and large-scale datasets.<n>This project aims to study such relationships between models and datasets, which are the central parts of the LLM supply chain.
- Score: 8.8013428182102
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) leverage deep learning architectures to process and predict sequences of words based on context, enabling them to perform a wide range of natural language processing tasks, such as translation, summarization, question answering, and content generation. However, the increasing size and complexity of developing, training, and deploying cutting-edge LLMs demand extensive computational resources and large-scale datasets. This creates a significant barrier for researchers and practitioners. Because of that, platforms that host models and datasets have gained widespread popularity. For example, on one of the most popular platforms, i.e., Hugging Face, there are more than 1.8 million models and more than 450K datasets by the end of June 2025, and the trend does not show any slowdown. As existing LLMs are often built from base models or other pretrained models and use external datasets, they can inevitably inherit vulnerabilities, biases, or malicious components that exist in previous models or datasets. Therefore, it is critical to understand these components' origin and development process to detect potential risks better, improve model fairness, and ensure compliance with regulatory frameworks. Motivated by that, this project aims to study such relationships between models and datasets, which are the central parts of the LLM supply chain. First, we design a methodology to collect LLMs' supply chain information systematically. With the collected information, we design a new graph to model the relationships between models and datasets, which is a large directed heterogeneous graph having 402,654 nodes and 462,524 edges. Then, on top of this graph, we perform different types of analysis and make multiple interesting findings.
Related papers
- C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning [78.36259648527401]
C2-Evo is an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities.<n>We show that C2-Evo consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks.
arXiv Detail & Related papers (2025-07-22T12:27:08Z) - Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
Model merging aims to combine multiple expert models into a single model, thereby reducing storage and serving costs.<n>Previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks.<n>We introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models.
arXiv Detail & Related papers (2025-05-26T12:23:14Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud [12.651588927599441]
We present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning.<n>These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs.<n>Experiments and an application study prove the effectiveness of our approach.
arXiv Detail & Related papers (2024-12-06T09:04:12Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - EvolveDirector: Approaching Advanced Text-to-Image Generation with Large Vision-Language Models [36.576853882830896]
We introduce EvolveDirector to train a text-to-image generation model comparable to advanced models using publicly available resources.
This framework interacts with advanced models through their public APIs to obtain text-image data pairs to train a base model.
We leverage pre-trained large vision-language models (VLMs) to guide the evolution of the base model.
arXiv Detail & Related papers (2024-10-09T17:52:28Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA)
Recent efforts primarily focus on scaling up training datasets through data collection and synthesis.
We propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development.
arXiv Detail & Related papers (2024-07-29T17:04:34Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models [18.219485459836285]
Generative Tabular Learning (GTL) is a novel framework that integrates the advanced functionalities of large language models (LLMs)
Our empirical study spans 384 public datasets, rigorously analyzing GTL's scaling behaviors.
GTL-LLaMA-2 model demonstrates superior zero-shot and in-context learning capabilities across numerous classification and regression tasks.
arXiv Detail & Related papers (2023-10-11T09:37:38Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.