Culling Misinformation from Gen AI: Toward Ethical Curation and Refinement
- URL: http://arxiv.org/abs/2507.14242v1
- Date: Thu, 17 Jul 2025 21:19:47 GMT
- Title: Culling Misinformation from Gen AI: Toward Ethical Curation and Refinement
- Authors: Prerana Khatiwada, Grace Donaher, Jasymyn Navarro, Lokesh Bhatta,
- Abstract summary: Recent developments, especially with the release of generative tools like ChatGPT, have brought it to the forefront of industry workers and academic folk alike.<n>This work takes a position on better understanding many equity concerns and the spread of misinformation that result from new AI.<n>Considering many academic sources, it warns against these issues, analyzing their cause and impact in fields including healthcare, education, science, academia, retail, and finance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Artificial Intelligence (AI) is not a new field, recent developments, especially with the release of generative tools like ChatGPT, have brought it to the forefront of the minds of industry workers and academic folk alike. There is currently much talk about AI and its ability to reshape many everyday processes as we know them through automation. It also allows users to expand their ideas by suggesting things they may not have thought of on their own and provides easier access to information. However, not all of the changes this technology will bring or has brought so far are positive; this is why it is extremely important for all modern people to recognize and understand the risks before using these tools and allowing them to cause harm. This work takes a position on better understanding many equity concerns and the spread of misinformation that result from new AI, in this case, specifically ChatGPT and deepfakes, and encouraging collaboration with law enforcement, developers, and users to reduce harm. Considering many academic sources, it warns against these issues, analyzing their cause and impact in fields including healthcare, education, science, academia, retail, and finance. Lastly, we propose a set of future-facing guidelines and policy considerations to solve these issues while still enabling innovation in these fields, this responsibility falling upon users, developers, and government entities.
Related papers
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.<n>We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.<n>Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Who is Responsible When AI Fails? Mapping Causes, Entities, and Consequences of AI Privacy and Ethical Incidents [29.070947259551478]
We analyzed 202 real-world AI privacy and ethical incidents.<n>This produced a taxonomy that classifies incident types across AI lifecycle stages.<n>It accounts for contextual factors such as causes, responsible entities, disclosure sources, and impacts.
arXiv Detail & Related papers (2025-03-28T21:57:38Z) - Analyzing User Perceptions of Large Language Models (LLMs) on Reddit: Sentiment and Topic Modeling of ChatGPT and DeepSeek Discussions [0.0]
This study aims at analyzing Reddit discussions about ChatGPT and DeepSeek using sentiment and topic modeling.<n>Report mentions whether users have faith in the technology and what they see as its future.
arXiv Detail & Related papers (2025-02-22T17:00:42Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
The article highlights the implications of AI, including its impact on economic, ethical, social, security & privacy, and job displacement aspects.
It discusses the ethical concerns surrounding AI development, including issues of bias, security, and privacy violations.
The article concludes by emphasizing the importance of public engagement and education to promote awareness and understanding of AI's impact on society at large.
arXiv Detail & Related papers (2023-12-22T00:41:21Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Amplifying Limitations, Harms and Risks of Large Language Models [1.0152838128195467]
We present this article as a small gesture in an attempt to counter what appears to be exponentially growing hype around Artificial Intelligence.
It may also help those outside of the field to become more informed about some of the limitations of AI technology.
arXiv Detail & Related papers (2023-07-06T11:53:45Z) - Redefining Relationships in Music [55.478320310047785]
We argue that AI tools will fundamentally reshape our music culture.
People working in this space could decrease the possible negative impacts on the practice, consumption and meaning of music.
arXiv Detail & Related papers (2022-12-13T19:44:32Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z) - The State of AI Ethics Report (June 2020) [0.0]
State of AI Ethics is a quarterly report from the Montreal AI Ethics Institute.
It provides a pulse-check for the state of discourse, research, and development in the field of AI.
This report covers Agency and Responsibility, Security and Risk, Disinformation, Jobs and Labor, the Future of AI Ethics, and more.
arXiv Detail & Related papers (2020-06-25T19:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.