Polar Codes for Erasure and Unital Classical-Quantum Markovian Channels
- URL: http://arxiv.org/abs/2507.14323v1
- Date: Fri, 18 Jul 2025 18:57:39 GMT
- Title: Polar Codes for Erasure and Unital Classical-Quantum Markovian Channels
- Authors: Jaswanthi Mandalapu, Vikesh Siddhu, Krishna Jagannathan,
- Abstract summary: Arikan-constructed polar codes achieve the classical capacity for two key noise models.<n>The memory in the channel is assumed to be governed by a discrete-time, countable-state, aperiodic, irreducible, and positive recurrent Markov process.
- Score: 3.249879651054463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider classical-quantum (cq-)channels with memory, and establish that Ar{\i}kan-constructed polar codes achieve the classical capacity for two key noise models, namely for (i) qubit erasures and (ii) unital qubit noise with channel state information at the receiver. The memory in the channel is assumed to be governed by a discrete-time, countable-state, aperiodic, irreducible, and positive recurrent Markov process. We establish this result by leveraging existing classical polar coding guarantees established for finite-state, aperiodic, and irreducible Markov processes [FAIM], alongside the recent finding that no entanglement is required to achieve the capacity of Markovian unital and erasure quantum channels when transmitting classical information. More broadly, our work illustrates that for cq-channels with memory, where an optimal coding strategy is essentially classical, polar codes can be shown to approach the capacity.
Related papers
- On the emergence of quantum memory in non-Markovian dynamics [41.94295877935867]
Non-Markovian dynamics (with memory) is typical in practice, with memory effects being harnessed as a resource for many tasks like quantum error correction and information processing.<n>Yet, the type of memory, classical or quantum, necessary to realize the dynamics of many collision models is not known.<n>In this work, we extend the quantum homogenizer to the non-Markovian regime by introducing intra-ancilla interactions mediated by Fredkin gates, and study the nature of its memory.
arXiv Detail & Related papers (2025-07-29T15:19:26Z) - Learning Orthogonal Random Unitary Channels with Contracted Quantum Approaches and Simplex Optimization [41.94295877935867]
We present a procedure for learning a class of random unitary channels on a quantum computer.<n>Our approach involves a multi-objective, Pauli- and unitary-based minimization, and allows for learning locally equivalent channels.
arXiv Detail & Related papers (2025-01-28T19:02:52Z) - Entanglement-breaking channels are a quantum memory resource [0.0]
Entanglement-breaking channels are an important class of quantum operations noted for their ability to destroy spatial quantum correlations.
We show that, in a single-system multi-time scenario, entanglement-breaking channels are still a quantum memory resource.
arXiv Detail & Related papers (2024-02-26T18:03:15Z) - Classical capacity of quantum non-Gaussian attenuator and amplifier
channels [0.8409980020848168]
We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode prepared in an arbitrary state.
We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel.
arXiv Detail & Related papers (2023-12-25T06:05:51Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Unital Qubit Queue-channels: Classical Capacity and Product Decoding [4.971638713979981]
Quantum queue-channels arise naturally in the context of buffering in quantum networks.
We show that the upper-bound on the capacity of an additive queue-channel has a simple expression, and is achievable for the erasure and depolarizing channels.
Our results provide useful insights towards designing practical quantum communication networks.
arXiv Detail & Related papers (2021-10-06T14:20:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Computing Sum of Sources over a Classical-Quantum MAC [13.561997774592664]
We propose and analyze a coding scheme based on coset codes.
The proposed technique enables the decoder recover the desired function without recovering the sources themselves.
This work is based on a new ensemble of coset codes that are proven to achieve the capacity of a classical-quantum point-to-point channel.
arXiv Detail & Related papers (2021-03-02T23:14:05Z) - Bosonic Dirty Paper Coding [12.437226707039448]
The single-mode bosonic channel is addressed with classical interference in the modulation and with side information at the transmitter.
We show that the effect of the channel parameter can be canceled even when the decoder has no side information.
Considering the special case of a pure-loss bosonic channel, we demonstrate that the optimal coefficient for dirty paper coding is not necessarily the MMSE estimator coefficient as in the classical setting.
arXiv Detail & Related papers (2021-01-03T09:48:08Z) - Universal classical-quantum superposition coding and universal
classical-quantum multiple access channel coding [67.6686661244228]
We derive universal classical-quantum superposition coding and universal classical-quantum multiple access channel code.
We establish the capacity region of a classical-quantum compound broadcast channel with degraded message sets.
arXiv Detail & Related papers (2020-11-01T03:26:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.