論文の概要: Classification of Histopathology Slides with Persistence Homology Convolutions
- arxiv url: http://arxiv.org/abs/2507.14378v1
- Date: Fri, 18 Jul 2025 21:56:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.865767
- Title: Classification of Histopathology Slides with Persistence Homology Convolutions
- Title(参考訳): Persistence Homology Convolutions を用いた病理組織学的スライドの分類
- Authors: Shrunal Pothagoni, Benjamin Schweinhart,
- Abstract要約: 本稿では、永続的ホモロジー畳み込み演算子の修正版を用いて、局所的永続的ホモロジーに基づくデータを生成する新しい手法を提案する。
これらの結果から, 持続的ホモロジー畳み込みは, 病理組織学的スライドから有意な幾何学的情報を抽出することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) are a standard tool for computer vision tasks such as image classification. However, typical model architectures may result in the loss of topological information. In specific domains such as histopathology, topology is an important descriptor that can be used to distinguish between disease-indicating tissue by analyzing the shape characteristics of cells. Current literature suggests that reintroducing topological information using persistent homology can improve medical diagnostics; however, previous methods utilize global topological summaries which do not contain information about the locality of topological features. To address this gap, we present a novel method that generates local persistent homology-based data using a modified version of the convolution operator called Persistent Homology Convolutions. This method captures information about the locality and translation invariance of topological features. We perform a comparative study using various representations of histopathology slides and find that models trained with persistent homology convolutions outperform conventionally trained models and are less sensitive to hyperparameters. These results indicate that persistent homology convolutions extract meaningful geometric information from the histopathology slides.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、画像分類などのコンピュータビジョンタスクの標準ツールである。
しかし、典型的なモデルアーキテクチャは、トポロジカルな情報が失われる可能性がある。
病理組織学のような特定の領域において、トポロジーは、細胞の形状特性を解析することにより、疾患を発現する組織を区別するために用いられる重要な記述物である。
近年の文献では、持続的ホモロジーを用いたトポロジ情報の再導入は医学的診断を改善することが示唆されているが、従来の手法では、トポロジ的特徴の局所性に関する情報を含まないグローバルトポロジ的要約を用いていた。
このギャップに対処するために、永続ホモロジー畳み込み演算子(Persistent Homology Convolutions)と呼ばれる畳み込み演算子の修正版を用いて、局所的永続ホモロジーに基づくデータを生成する新しい手法を提案する。
この手法は、位相的特徴の局所性と翻訳不変性に関する情報をキャプチャする。
病理組織学スライドの様々な表現を用いて比較研究を行い、持続的ホモロジー畳み込みで訓練されたモデルが従来の訓練されたモデルより優れ、過度パラメータに敏感でないことを発見した。
これらの結果から, 持続的ホモロジー畳み込みは, 病理組織学的スライドから有意な幾何学的情報を抽出することが示唆された。
関連論文リスト
- MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model [32.670806339139034]
本研究では,トポロジ制約を拡散モデルに統合し,現実的で文脈的に正確なセルトポロジの生成を改善する手法を提案する。
本手法は, セル分布と相互作用のシミュレーションを改良し, 下流タスクにおける結果の精度と解釈可能性を高める。
論文 参考訳(メタデータ) (2024-12-08T18:02:22Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
生物学的文脈における暗黙の対応の重要性を明らかにする。
モデル構成成分間のインスタンス認識トレードオフを確保するために, 自己適応型動的蒸留を提案する。
論文 参考訳(メタデータ) (2024-07-14T04:41:16Z) - Finding Interpretable Class-Specific Patterns through Efficient Neural
Search [43.454121220860564]
本稿では、データから微分パターンを抽出する、本質的に解釈可能なバイナリニューラルネットワークアーキテクチャDNAPSを提案する。
DiffNapsは何十万もの機能にスケーラブルで、ノイズに強い。
3つの生物学的応用を含む人工的および実世界のデータについて、DiffNapsは競合と異なり、常に正確で簡潔で解釈可能なクラス記述を生成する。
論文 参考訳(メタデータ) (2023-12-07T14:09:18Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Data and Knowledge Co-driving for Cancer Subtype Classification on
Multi-Scale Histopathological Slides [4.22412600279685]
病理学者のような組織学的スライド上で癌サブタイプ分類の過程を再現するデータ・知識共同運転(D&K)モデルを提案する。
具体的には、データ駆動モジュールにおいて、アンサンブル学習におけるバッグング機構を利用して、埋め込み表現ユニットによって抽出された様々なバッグの組織学的特徴を統合する。
論文 参考訳(メタデータ) (2023-04-18T21:57:37Z) - Topological Data Analysis of Neural Network Layer Representations [0.0]
単純なフィードフォワードニューラルネットワークの、クラインボトルのようなねじれのある修正トーラスの層表現の位相的特徴を計算した。
結果として生じるノイズは、これらの特徴を計算するための永続的ホモロジーの能力を妨げた。
論文 参考訳(メタデータ) (2022-07-01T00:51:19Z) - Persistent Homological State-Space Estimation of Functional Human Brain Networks at Rest [15.272033502877413]
我々は、動的に変化する脳ネットワークの静止状態空間を推定する革新的なデータ駆動型トポロジカルデータ解析手法を導入する。
この手法は、脳ネットワークの状態空間を特定する際によく使われるk平均クラスタリングよりも優れている。
以上の結果から,脳ネットワークのトポロジ,特にその動的状態変化は,重要な隠れた遺伝情報を保持できる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-01T01:39:05Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。