Classification of Histopathology Slides with Persistence Homology Convolutions
- URL: http://arxiv.org/abs/2507.14378v1
- Date: Fri, 18 Jul 2025 21:56:53 GMT
- Title: Classification of Histopathology Slides with Persistence Homology Convolutions
- Authors: Shrunal Pothagoni, Benjamin Schweinhart,
- Abstract summary: We present a novel method that generates local persistent homology-based data using a modified version of the convolution operator called Persistent Homology Convolutions.<n>These results indicate that persistent homology convolutions extract meaningful geometric information from the histopathology slides.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) are a standard tool for computer vision tasks such as image classification. However, typical model architectures may result in the loss of topological information. In specific domains such as histopathology, topology is an important descriptor that can be used to distinguish between disease-indicating tissue by analyzing the shape characteristics of cells. Current literature suggests that reintroducing topological information using persistent homology can improve medical diagnostics; however, previous methods utilize global topological summaries which do not contain information about the locality of topological features. To address this gap, we present a novel method that generates local persistent homology-based data using a modified version of the convolution operator called Persistent Homology Convolutions. This method captures information about the locality and translation invariance of topological features. We perform a comparative study using various representations of histopathology slides and find that models trained with persistent homology convolutions outperform conventionally trained models and are less sensitive to hyperparameters. These results indicate that persistent homology convolutions extract meaningful geometric information from the histopathology slides.
Related papers
- MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.<n>We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.<n>Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model [32.670806339139034]
We propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies.<n>Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks.
arXiv Detail & Related papers (2024-12-08T18:02:22Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - Finding Interpretable Class-Specific Patterns through Efficient Neural
Search [43.454121220860564]
We propose a novel, inherently interpretable binary neural network architecture DNAPS that extracts differential patterns from data.
DiffNaps is scalable to hundreds of thousands of features and robust to noise.
We show on synthetic and real world data, including three biological applications, that, unlike its competitors, DiffNaps consistently yields accurate, succinct, and interpretable class descriptions.
arXiv Detail & Related papers (2023-12-07T14:09:18Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Data and Knowledge Co-driving for Cancer Subtype Classification on
Multi-Scale Histopathological Slides [4.22412600279685]
We propose a Data and Knowledge Co-driving (D&K) model to replicate the process of cancer subtype classification on a histological slide like a pathologist.
Specifically, in the data-driven module, the bagging mechanism in ensemble learning is leveraged to integrate the histological features from various bags extracted by the embedding representation unit.
arXiv Detail & Related papers (2023-04-18T21:57:37Z) - Topological Data Analysis of Neural Network Layer Representations [0.0]
topological features of a simple feedforward neural network's layer representations of a modified torus with a Klein bottle-like twist were computed.
The resulting noise hampered the ability of persistent homology to compute these features.
arXiv Detail & Related papers (2022-07-01T00:51:19Z) - Persistent Homological State-Space Estimation of Functional Human Brain Networks at Rest [15.272033502877413]
We introduce an innovative, data-driven topological data analysis technique for estimating the state spaces of dynamically changing brain networks at rest.
This technique outperforms the commonly used k-means clustering in identifying brain network state spaces.
Our findings suggest that the topology of brain networks, particularly in their dynamic state changes, may hold significant hidden genetic information.
arXiv Detail & Related papers (2022-01-01T01:39:05Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.