論文の概要: Inverse Scaling in Test-Time Compute
- arxiv url: http://arxiv.org/abs/2507.14417v1
- Date: Sat, 19 Jul 2025 00:06:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.876858
- Title: Inverse Scaling in Test-Time Compute
- Title(参考訳): テスト時間計算における逆スケーリング
- Authors: Aryo Pradipta Gema, Alexander Hägele, Runjin Chen, Andy Arditi, Jacob Goldman-Wetzler, Kit Fraser-Taliente, Henry Sleight, Linda Petrini, Julian Michael, Beatrice Alex, Pasquale Minervini, Yanda Chen, Joe Benton, Ethan Perez,
- Abstract要約: LRM(Large Reasoning Models)の推論長の延長は性能を低下させる。
モデルが長い理由付けをする場合には、5つの異なる障害モードを特定します。
これらの結果は、テストタイムの計算スケーリングはモデル機能の改善に引き続き期待できるが、問題のある推論パターンを必然的に補強する可能性があることを示唆している。
- 参考スコア(独自算出の注目度): 51.16323216811257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy. Our evaluation tasks span four categories: simple counting tasks with distractors, regression tasks with spurious features, deduction tasks with constraint tracking, and advanced AI risks. We identify five distinct failure modes when models reason for longer: 1) Claude models become increasingly distracted by irrelevant information; 2) OpenAI o-series models resist distractors but overfit to problem framings; 3) models shift from reasonable priors to spurious correlations; 4) all models show difficulties in maintaining focus on complex deductive tasks; and 5) extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation. These findings suggest that while test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns. Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs.
- Abstract(参考訳): 本研究では,Large Reasoning Models (LRM) の推論長の延長が性能を低下させる評価タスクを構築し,テスト時間計算と精度の逆スケーリング関係を示す。
評価タスクは4つのカテゴリにまたがる: イントラクタ付きタスクの単純なカウント、突発的な機能付き回帰タスク、制約追跡付き推論タスク、高度なAIリスク。
モデルがより長い理由を持つ場合、私たちは5つの異なる障害モードを特定します。
1) クロードモデルは,無関係な情報にますます気を散らされる。
2 OpenAI Oシリーズモデルは、気晴らしに抵抗するが、問題フレーミングに過度に適合する。
3) モデルは,合理的な先行から急激な相関へ移行する。
4)全てのモデルは,複雑な減算業務に注力する上で困難を示す。
クロード・ソネット4は自己保存の表現の増大を示す。
これらの結果は、テストタイムの計算スケーリングはモデル機能の改善に引き続き期待できるが、問題のある推論パターンを必然的に補強する可能性があることを示唆している。
この結果から, LRMにおけるこれらの障害モードを特定し, 対処するために, 様々な推論長のモデルを評価することの重要性が示唆された。
関連論文リスト
- Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning [22.32435186013626]
本稿では,いくつかの潜在能力因子の線形変換としてベンチマーク性能をモデル化した因果表現学習フレームワークを提案する。
このアプローチを6つのベンチマークで評価された1500以上のモデルを含む包括的データセットに適用することにより、観測された性能変動を確実に説明できる簡潔な3ノード線形因果構造を同定する。
論文 参考訳(メタデータ) (2025-06-12T06:07:42Z) - Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
私たちはこの問題を因果パラダイムに枠組み化し、永続的な課題を特定するための因果関係の豊富なツールボックスを提供します。
因果推論の文献を継承し、信頼性の高い一般化に必要な重要な仮定を特定する。
そこで本研究では, 因果関係に基づくアプローチがモデルロバスト性をいかに改善するかを, ナイーブ報酬モデルの障害モードを例示する。
論文 参考訳(メタデータ) (2025-06-06T10:45:42Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
大規模言語モデル(LLM)は、テスト時間スケーリングとして知られる、テスト時間計算の増加の恩恵を受ける。
しかし、推論最適化モデルはしばしば単純な問題さえ考え過ぎ、過度に冗長な出力を生成し、トークン効率を低下させる。
1)強化学習は前方推論の情報密度を減少させ,(2)後方連鎖学習は冗長でしばしば不要な検証ステップを促進する。
論文 参考訳(メタデータ) (2025-05-28T06:24:45Z) - Scaling Reasoning, Losing Control: Evaluating Instruction Following in Large Reasoning Models [27.142703756752997]
数学的推論タスクにおける命令追従評価のためのベンチマークであるMathIFを紹介する。
我々の実証分析では、推論能力のスケールアップと制御可能性の維持の間に一貫した緊張関係が明らかになっている。
簡単な介入であっても、性能を推論するコストはかかるものの、部分的に服従を回復できることが示される。
論文 参考訳(メタデータ) (2025-05-20T18:18:01Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
大規模言語モデル (LLM) 時代における評価の課題の1つは一般化問題である。
従来の性能スコアを補完するメカニズムの解釈可能性向上指標であるモデル利用指数(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead [33.011660907969706]
推論時間スケーリングは、大きな言語モデルの推論能力を高めることができる。
本研究では,9つの最先端モデルと8つの課題にまたがるスケーリング手法の利点と限界について検討する。
論文 参考訳(メタデータ) (2025-03-31T23:40:28Z) - Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs [28.565225092457897]
強化学習は、検証可能なタスクにおける言語モデルにおける自己改善を促進することができる。
また,Qwen-2.5-3BがLlama-3.2-3Bを超えることが確認された。
我々の研究は、Qwenが自然にこれらの推論行動を示すのに対して、Llamaはこれらを欠いていることを明らかにしている。
論文 参考訳(メタデータ) (2025-03-03T08:46:22Z) - Spatial Reasoning with Denoising Models [49.83744014336816]
本稿では,連続変数の集合に対する推論を行うためのフレームワークを提案する。
初めて、その生成順序をデノナイジングネットワーク自体によって予測できる。
これらの結果から,特定の推論タスクの精度を1%から50%に向上させることができる。
論文 参考訳(メタデータ) (2025-02-28T14:08:30Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。