DCHM: Depth-Consistent Human Modeling for Multiview Detection
- URL: http://arxiv.org/abs/2507.14505v1
- Date: Sat, 19 Jul 2025 06:37:14 GMT
- Title: DCHM: Depth-Consistent Human Modeling for Multiview Detection
- Authors: Jiahao Ma, Tianyu Wang, Miaomiao Liu, David Ahmedt-Aristizabal, Chuong Nguyen,
- Abstract summary: Multiview pedestrian detection typically involves two stages: human modeling and pedestrian localization.<n>We propose Depth-Consistent Human Modeling (DCHM), a framework designed for consistent depth estimation and multiview fusion.<n>Our proposed pipeline with superpixel-wise Gaussian Splatting achieves multiview depth consistency in sparse-view, large-scaled, and crowded scenarios.
- Score: 13.81157120485514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiview pedestrian detection typically involves two stages: human modeling and pedestrian localization. Human modeling represents pedestrians in 3D space by fusing multiview information, making its quality crucial for detection accuracy. However, existing methods often introduce noise and have low precision. While some approaches reduce noise by fitting on costly multiview 3D annotations, they often struggle to generalize across diverse scenes. To eliminate reliance on human-labeled annotations and accurately model humans, we propose Depth-Consistent Human Modeling (DCHM), a framework designed for consistent depth estimation and multiview fusion in global coordinates. Specifically, our proposed pipeline with superpixel-wise Gaussian Splatting achieves multiview depth consistency in sparse-view, large-scaled, and crowded scenarios, producing precise point clouds for pedestrian localization. Extensive validations demonstrate that our method significantly reduces noise during human modeling, outperforming previous state-of-the-art baselines. Additionally, to our knowledge, DCHM is the first to reconstruct pedestrians and perform multiview segmentation in such a challenging setting. Code is available on the \href{https://jiahao-ma.github.io/DCHM/}{project page}.
Related papers
- Enhanced Multi-View Pedestrian Detection Using Probabilistic Occupancy Volume [21.393389135740712]
Occlusion poses a significant challenge in pedestrian detection from a single view.<n>Recent advances in multi-view detection utilized an early-fusion strategy that strategically projects the features onto the ground plane.<n>We introduce a novel model that efficiently leverages traditional 3D reconstruction techniques to enhance deep multi-view pedestrian detection.
arXiv Detail & Related papers (2025-03-14T01:05:44Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - GenS: Generalizable Neural Surface Reconstruction from Multi-View Images [20.184657468900852]
GenS is an end-to-end generalizable neural surface reconstruction model.
Our representation is more powerful, which can recover high-frequency details while maintaining global smoothness.
Experiments on popular benchmarks show that our model can generalize well to new scenes.
arXiv Detail & Related papers (2024-06-04T17:13:10Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
We consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera.
We leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks.
In particular, we estimate the scene depth and unique person scale from normalized disparity predictions using the 2D body joints and joint angles.
arXiv Detail & Related papers (2023-01-12T18:01:28Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - Multiview Detection with Cardboard Human Modeling [23.072791405965415]
We propose a new pedestrian representation scheme based on human point clouds modeling.
Specifically, using ray tracing for holistic human depth estimation, we model pedestrians as upright, thin cardboard point clouds on the ground.
arXiv Detail & Related papers (2022-07-05T12:47:26Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
We present Multi-view Pose transformer (MvP) for estimating multi-person 3D poses from multi-view images.
MvP directly regresses the multi-person 3D poses in a clean and efficient way, without relying on intermediate tasks.
We show experimentally that our MvP model outperforms the state-of-the-art methods on several benchmarks while being much more efficient.
arXiv Detail & Related papers (2021-11-07T13:09:20Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.