論文の概要: Configurable multi-agent framework for scalable and realistic testing of llm-based agents
- arxiv url: http://arxiv.org/abs/2507.14705v1
- Date: Sat, 19 Jul 2025 17:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.014544
- Title: Configurable multi-agent framework for scalable and realistic testing of llm-based agents
- Title(参考訳): llmベースのエージェントのスケーラブルで現実的なテストのための構成可能なマルチエージェントフレームワーク
- Authors: Sai Wang, Senthilnathan Subramanian, Mudit Sahni, Praneeth Gone, Lingjie Meng, Xiaochen Wang, Nicolas Ferradas Bertoli, Tingxian Cheng, Jun Xu,
- Abstract要約: 大言語モデル(LLM)エージェントは複雑で文脈に敏感な振る舞いを示す。
我々は,LLMベースのシステムの現実的マルチターン評価を自動化するフレームワークであるNeoを提案する。
- 参考スコア(独自算出の注目度): 7.459112445054928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-language-model (LLM) agents exhibit complex, context-sensitive behaviour that quickly renders static benchmarks and ad-hoc manual testing obsolete. We present Neo, a configurable, multi-agent framework that automates realistic, multi-turn evaluation of LLM-based systems. Neo couples a Question Generation Agent and an Evaluation Agent through a shared context-hub, allowing domain prompts, scenario controls and dynamic feedback to be composed modularly. Test inputs are sampled from a probabilistic state model spanning dialogue flow, user intent and emotional tone, enabling diverse, human-like conversations that adapt after every turn. Applied to a production-grade Seller Financial Assistant chatbot, Neo (i) uncovered edge-case failures across five attack categories with a 3.3% break rate close to the 5.8% achieved by expert human red-teamers, and (ii) delivered 10-12X higher throughput, generating 180 coherent test questions in around 45 mins versus 16h of human effort. Beyond security probing, Neo's stochastic policies balanced topic coverage and conversational depth, yielding broader behavioural exploration than manually crafted scripts. Neo therefore lays a foundation for scalable, self-evolving LLM QA: its agent interfaces, state controller and feedback loops are model-agnostic and extensible to richer factual-grounding and policy-compliance checks. We release the framework to facilitate reproducible, high-fidelity testing of emerging agentic systems.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは、静的ベンチマークとアドホックな手動テストを素早くレンダリングする複雑なコンテキスト依存の振る舞いを示す。
我々は,LLMベースのシステムの現実的マルチターン評価を自動化する,構成可能なマルチエージェントフレームワークであるNeoを提案する。
Neoは、共有コンテキストハブを通じて質問生成エージェントと評価エージェントを結合することで、ドメインプロンプト、シナリオコントロール、動的フィードバックをモジュール的に構成することができる。
テストインプットは、対話フロー、ユーザ意図、感情的なトーンにまたがる確率論的状態モデルからサンプリングされ、各ターン後に適応する多様な人間的な会話を可能にする。
生産レベルのSeller Financial Assistantチャットボット、Neoへの適用
(i)5つの攻撃カテゴリーにまたがるエッジケースの故障が、専門家のレッドチームによって達成された5.8%に近い3.3%のブレーク率で明らかになったこと。
(i)10~12倍のスループットを実現し,約45分で180個のコヒーレントなテスト質問を発生させた。
セキュリティ調査の他に、Neoの確率的なポリシーはトピックのカバレッジと会話の深みをバランスさせ、手作業によるスクリプトよりも広範な行動探索を可能にした。
エージェントインターフェース、状態コントローラ、フィードバックループはモデルに依存しず、よりリッチな現実的なグラウンドとポリシーに準拠したチェックに拡張可能である。
創発的エージェントシステムの再現性、高忠実度テストを容易にするためのフレームワークをリリースする。
関連論文リスト
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
テスト時間スケーリングを備えたマルチエージェント協調フレームワークであるMACTを提案する。
4つの異なる小規模エージェントから構成され、明確に定義された役割と効果的なコラボレーションがある。
一般および数学的タスクの能力を犠牲にすることなく、より小さなパラメータスケールで優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-05T12:52:09Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
マルチエージェント推論を符号化し、マルチエージェントシステムにおける構造化されたトークン効率の計画を可能にするプロンプトフレームワークであるCodeAgentsを紹介する。
その結果, 計画性能は一貫した改善がみられ, 基本となる自然言語よりも3~36ポイントの絶対的な向上が見られた。
論文 参考訳(メタデータ) (2025-07-04T02:20:19Z) - What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities [56.646832992178105]
我々は、制御可能な複雑性のタスクを合成するための自動パイプラインを備えたクロスプラットフォームグラフベースのベンチマークであるOmniBenchを紹介した。
OmniEvalは、サブタスクレベルの評価、グラフベースのメトリクス、および10機能にわたる包括的なテストを含む多次元評価フレームワークである。
我々のデータセットには、20のシナリオにわたる36万のグラフ構造化タスクが含まれており、人間の受け入れ率は91%に達する。
論文 参考訳(メタデータ) (2025-06-10T15:59:38Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents [28.20409050985182]
A/Bテストは、ヒトの大規模でライブなトラフィックに依存しているため、依然として制限されている。
本稿では,ユーザインタラクション行動と実際のWebページを自動的にシミュレートする新しいシステムであるAgentA/Bを提案する。
以上の結果から, エージェントA/Bは人間の行動パターンをエミュレートできる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-13T21:10:56Z) - IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems [2.2810745411557316]
IntellAgentは、対話型AIシステムを評価するためのスケーラブルでオープンソースのフレームワークである。
IntellAgentは、ポリシー駆動グラフモデリング、リアルイベント生成、対話型ユーザエージェントシミュレーションを組み合わせることで、合成ベンチマークの作成を自動化する。
我々の研究は、IntellAgentが、研究と展開の橋渡しの課題に対処することで、会話AIを前進させるための効果的なフレームワークであることを示した。
論文 参考訳(メタデータ) (2025-01-19T14:58:35Z) - Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues [54.81155589931697]
協調インスタンスオブジェクトナビゲーション(CoIN)は、エージェントがターゲットインスタンスに関する不確実性を積極的に解決する新しいタスク設定である。
未認識者に対するエージェント・ユーザインタラクション(AIUTA)の新たな学習自由化手法を提案する。
まず、オブジェクト検出時に、セルフクエチオナーモデルがエージェント内で自己対話を開始し、完全かつ正確な観察記述を得る。
インタラクショントリガーモジュールは、人間に質問するか、継続するか、ナビゲーションを停止するかを決定する。
論文 参考訳(メタデータ) (2024-12-02T08:16:38Z) - AutoPenBench: Benchmarking Generative Agents for Penetration Testing [42.681170697805726]
本稿では,自動貫入試験における生成エージェント評価のためのオープンベンチマークであるAutoPenBenchを紹介する。
エージェントが攻撃しなければならない脆弱性のあるシステムを表す33のタスクを含む包括的フレームワークを提案する。
完全自律型と半自律型という2つのエージェントアーキテクチャをテストすることで,AutoPenBenchのメリットを示す。
論文 参考訳(メタデータ) (2024-10-04T08:24:15Z) - Automatic Generation of Behavioral Test Cases For Natural Language Processing Using Clustering and Prompting [6.938766764201549]
本稿では,大規模言語モデルと統計的手法の力を活用したテストケースの自動開発手法を提案する。
4つの異なる分類アルゴリズムを用いて行動テストプロファイルを分析し、それらのモデルの限界と強みについて議論する。
論文 参考訳(メタデータ) (2024-07-31T21:12:21Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crabは、クロス環境タスクをサポートするように設計された最初のベンチマークフレームワークである。
私たちのフレームワークは複数のデバイスをサポートし、Pythonインターフェースで簡単に任意の環境に拡張できます。
実験の結果、GPT-4oの1剤が38.01%の最高完成率を達成することが示された。
論文 参考訳(メタデータ) (2024-07-01T17:55:04Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。