Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization
- URL: http://arxiv.org/abs/2507.14746v1
- Date: Sat, 19 Jul 2025 20:36:38 GMT
- Title: Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization
- Authors: Bach Do, Nafeezat A. Ajenifuja, Taiwo A. Adebiyi, Ruda Zhang,
- Abstract summary: We present two notable sampling methods for generating posterior samples from Gaussian processes (GPs)<n>We detail how the generated samples can be applied in GSA, single-objective optimization, and multi-objective optimization.
- Score: 2.6999000177990924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-fidelity simulations and physical experiments are essential for engineering analysis and design. However, their high cost often limits their applications in two critical tasks: global sensitivity analysis (GSA) and optimization. This limitation motivates the common use of Gaussian processes (GPs) as proxy regression models to provide uncertainty-aware predictions based on a limited number of high-quality observations. GPs naturally enable efficient sampling strategies that support informed decision-making under uncertainty by extracting information from a subset of possible functions for the model of interest. Despite their popularity in machine learning and statistics communities, sampling from GPs has received little attention in the community of engineering optimization. In this paper, we present the formulation and detailed implementation of two notable sampling methods -- random Fourier features and pathwise conditioning -- for generating posterior samples from GPs. Alternative approaches are briefly described. Importantly, we detail how the generated samples can be applied in GSA, single-objective optimization, and multi-objective optimization. We show successful applications of these sampling methods through a series of numerical examples.
Related papers
- Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit [0.0]
This paper proposes a new sampling strategy for global fit called Gradient and Uncertainty Enhanced Sequential Sampling (GUESS)
We show that GUESS achieved on average the highest sample efficiency compared to other surrogate-based strategies on the tested examples.
arXiv Detail & Related papers (2023-09-29T19:49:39Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
We propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise.
This translates to quicker HPO convergence on empirical benchmarks.
arXiv Detail & Related papers (2023-05-05T15:33:39Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis [32.488975902387395]
General-purpose reachability analysis remains a notoriously challenging problem with applications ranging from neural network verification to safety analysis of dynamical systems.
By sampling inputs, evaluating their images in the true reachable set, and taking their $epsilon$-padded convex hull as a set estimator, this algorithm applies to general problem settings and is simple to implement.
This analysis informs algorithmic design to obtain an $epsilon$-close reachable set approximation with high probability.
On a neural network verification task, we show that this approach is more accurate and significantly faster than prior work.
arXiv Detail & Related papers (2021-12-10T18:56:16Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
Local Interpretable Model-Agnostic Explanations (LIME) is a popular technique for explaining the prediction of a single instance.
We propose a Gaussian Process (GP) based variation of locally interpretable models.
We demonstrate that the proposed technique is able to generate faithful explanations using much fewer samples as compared to LIME.
arXiv Detail & Related papers (2021-08-16T05:49:01Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.