An Evaluation of DUSt3R/MASt3R/VGGT 3D Reconstruction on Photogrammetric Aerial Blocks
- URL: http://arxiv.org/abs/2507.14798v1
- Date: Sun, 20 Jul 2025 03:09:04 GMT
- Title: An Evaluation of DUSt3R/MASt3R/VGGT 3D Reconstruction on Photogrammetric Aerial Blocks
- Authors: Xinyi Wu, Steven Landgraf, Markus Ulrich, Rongjun Qin,
- Abstract summary: 3D computer vision algorithms continue to advance in handling sparse, unordered image sets.<n>Recently developed foundational models for 3D reconstruction have attracted attention due to their ability to handle very sparse image overlaps.<n>This paper conducts a comprehensive evaluation of the pre-trained DUSt3R/MASt3R/VGGT models on the aerial blocks of the UseGeo dataset for pose estimation and dense 3D reconstruction.
- Score: 24.420174764554794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art 3D computer vision algorithms continue to advance in handling sparse, unordered image sets. Recently developed foundational models for 3D reconstruction, such as Dense and Unconstrained Stereo 3D Reconstruction (DUSt3R), Matching and Stereo 3D Reconstruction (MASt3R), and Visual Geometry Grounded Transformer (VGGT), have attracted attention due to their ability to handle very sparse image overlaps. Evaluating DUSt3R/MASt3R/VGGT on typical aerial images matters, as these models may handle extremely low image overlaps, stereo occlusions, and textureless regions. For redundant collections, they can accelerate 3D reconstruction by using extremely sparsified image sets. Despite tests on various computer vision benchmarks, their potential on photogrammetric aerial blocks remains unexplored. This paper conducts a comprehensive evaluation of the pre-trained DUSt3R/MASt3R/VGGT models on the aerial blocks of the UseGeo dataset for pose estimation and dense 3D reconstruction. Results show these methods can accurately reconstruct dense point clouds from very sparse image sets (fewer than 10 images, up to 518 pixels resolution), with completeness gains up to +50% over COLMAP. VGGT also demonstrates higher computational efficiency, scalability, and more reliable camera pose estimation. However, all exhibit limitations with high-resolution images and large sets, as pose reliability declines with more images and geometric complexity. These findings suggest transformer-based methods cannot fully replace traditional SfM and MVS, but offer promise as complementary approaches, especially in challenging, low-resolution, and sparse scenarios.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - Gaussian Scenes: Pose-Free Sparse-View Scene Reconstruction using Depth-Enhanced Diffusion Priors [5.407319151576265]
We introduce a generative approach for pose-free (without camera parameters) reconstruction of 360 scenes from a sparse set of 2D images.<n>We propose an image-to-image generative model designed to inpaint missing details and remove artifacts in novel view renders and depth maps of a 3D scene.
arXiv Detail & Related papers (2024-11-24T19:34:58Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.<n>Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
Multi-view (MV) 3D reconstruction is a promising solution to fuse generated MV images into consistent 3D objects.
However, the generated images usually suffer from inconsistent lighting, misaligned geometry, and sparse views, leading to poor reconstruction quality.
We present a novel 3D reconstruction framework that leverages intrinsic decomposition guidance, transient-mono prior guidance, and view augmentation to cope with the three issues.
arXiv Detail & Related papers (2024-01-29T02:30:31Z) - DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
We introduce DUSt3R, a novel paradigm for Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections.<n>We show that this formulation smoothly unifies the monocular and binocular reconstruction cases.<n>Our formulation directly provides a 3D model of the scene as well as depth information, but interestingly, we can seamlessly recover from it, pixel matches, relative and absolute camera.
arXiv Detail & Related papers (2023-12-21T18:52:14Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3 is a multi-camera system for dense 3D reconstruction and ego-motion estimation.
Our approach exploits spatial-temporal information from multiple cameras, and monocular depth refinement.
We show that this design enables a dense, consistent 3D reconstruction of challenging, dynamic outdoor environments.
arXiv Detail & Related papers (2023-08-28T17:13:49Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.