論文の概要: Paired Image Generation with Diffusion-Guided Diffusion Models
- arxiv url: http://arxiv.org/abs/2507.14833v1
- Date: Sun, 20 Jul 2025 06:13:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.079836
- Title: Paired Image Generation with Diffusion-Guided Diffusion Models
- Title(参考訳): 拡散誘導拡散モデルによるペア画像生成
- Authors: Haoxuan Zhang, Wenju Cui, Yuzhu Cao, Tao Tan, Jie Liu, Yunsong Peng, Jian Zheng,
- Abstract要約: 乳がん早期検診において,デジタル乳房トモシンセプション(DBT)画像における腫瘤の分画は極めて重要である。
病変の隠蔽が高いため,病変部位の特徴を知ることは困難である。
外部条件を必要としないペア画像生成法を提案する。
- 参考スコア(独自算出の注目度): 7.250159141422439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of mass lesions in digital breast tomosynthesis (DBT) images is very significant for the early screening of breast cancer. However, the high-density breast tissue often leads to high concealment of the mass lesions, which makes manual annotation difficult and time-consuming. As a result, there is a lack of annotated data for model training. Diffusion models are commonly used for data augmentation, but the existing methods face two challenges. First, due to the high concealment of lesions, it is difficult for the model to learn the features of the lesion area. This leads to the low generation quality of the lesion areas, thus limiting the quality of the generated images. Second, existing methods can only generate images and cannot generate corresponding annotations, which restricts the usability of the generated images in supervised training. In this work, we propose a paired image generation method. The method does not require external conditions and can achieve the generation of paired images by training an extra diffusion guider for the conditional diffusion model. During the experimental phase, we generated paired DBT slices and mass lesion masks. Then, we incorporated them into the supervised training process of the mass lesion segmentation task. The experimental results show that our method can improve the generation quality without external conditions. Moreover, it contributes to alleviating the shortage of annotated data, thus enhancing the performance of downstream tasks.
- Abstract(参考訳): 乳がん早期検診において,デジタル乳房トモシンセプション(DBT)画像における腫瘤の分画は極めて重要である。
しかし、高密度の乳腺組織は、しばしば大量病変の隠蔽を招き、手動による注記が困難で時間を要する。
その結果、モデルトレーニングには注釈付きデータがない。
拡散モデルはデータ拡張に一般的に使用されるが、既存の方法は2つの課題に直面している。
まず,病変の隠蔽率が高いことから,病変部位の特徴をモデルで学ぶことは困難である。
これにより、病変領域の低生成品質が得られ、それによって生成された画像の品質が制限される。
第二に、既存の手法では画像のみを生成でき、対応するアノテーションを生成できないため、教師付きトレーニングにおいて生成された画像のユーザビリティが制限される。
本研究では,ペア画像生成手法を提案する。
この方法は外部条件を必要とせず、条件拡散モデルのための余分な拡散誘導器を訓練することによりペア画像を生成することができる。
実験では,DBTスライスとマス損傷マスクのペアを作成した。
そこで我々は,腫瘤分節タスクの指導的訓練プロセスにそれらを組み込んだ。
実験の結果,外部条件を使わずに生成品質を向上できることがわかった。
さらに、アノテーション付きデータの不足を軽減し、下流タスクのパフォーマンスを向上させることに寄与する。
関連論文リスト
- DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
DiffDoctorは2段階のパイプラインで、画像拡散モデルがより少ないアーティファクトを生成するのを支援する。
我々は100万以上の欠陥のある合成画像のデータセットを収集し、効率的なHuman-in-the-loopアノテーションプロセスを構築した。
次に、学習したアーティファクト検出器が第2段階に関与し、ピクセルレベルのフィードバックを提供することで拡散モデルを最適化する。
論文 参考訳(メタデータ) (2025-01-21T18:56:41Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
脳画像における教師なし異常検出のためのMasked Autoencoder-enhanced Diffusion Model (MAEDiff)を提案する。
MAEDiffは、階層的なパッチ分割を含む。上層パッチを重畳して健全なイメージを生成し、サブレベルパッチで動作するマスク付きオートエンコーダに基づくメカニズムを実装し、未通知領域の状態を高める。
論文 参考訳(メタデータ) (2024-01-19T08:54:54Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - Safe Latent Diffusion: Mitigating Inappropriate Degeneration in
Diffusion Models [18.701950647429]
テキスト条件付き画像生成モデルは、劣化した人間の行動に悩まされる。
我々は、これらの望ましくない副作用に対処するために、安全な潜伏拡散(SLD)を提示する。
拡散過程において,SLDは不適切な画像部分を取り除き,抑制することを示す。
論文 参考訳(メタデータ) (2022-11-09T18:54:25Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - RADIOGAN: Deep Convolutional Conditional Generative adversarial Network
To Generate PET Images [3.947298454012977]
MIPポジトロン放射トモグラフィー画像(PET)を生成するための深層畳み込み条件生成対向ネットワークを提案する。
提案手法の利点は,1種類の病変に対して,小さな標本サイズで訓練した病変の異なるクラスを生成できるモデルから成り立っている。
また,画像評価ツールとして,潜伏空間を歩行できることを示す。
論文 参考訳(メタデータ) (2020-03-19T10:14:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。