A Privacy-Centric Approach: Scalable and Secure Federated Learning Enabled by Hybrid Homomorphic Encryption
- URL: http://arxiv.org/abs/2507.14853v2
- Date: Thu, 07 Aug 2025 06:51:48 GMT
- Title: A Privacy-Centric Approach: Scalable and Secure Federated Learning Enabled by Hybrid Homomorphic Encryption
- Authors: Khoa Nguyen, Tanveer Khan, Hossein Abdinasibfar, Antonis Michalas,
- Abstract summary: Federated Learning (FL) enables collaborative model training without sharing raw data, making it a promising approach for privacy-sensitive domains.<n>Despite its potential, FL faces significant challenges, particularly in terms of communication overhead and data privacy.<n>In this work, we explore how Hybrid Homomorphic Encryption (HHE), a cryptographic protocol that combines symmetric encryption with HE, can be effectively integrated with FL to address both communication and privacy challenges.
- Score: 2.611778281107039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training without sharing raw data, making it a promising approach for privacy-sensitive domains. Despite its potential, FL faces significant challenges, particularly in terms of communication overhead and data privacy. Privacy-preserving Techniques (PPTs) such as Homomorphic Encryption (HE) have been used to mitigate these concerns. However, these techniques introduce substantial computational and communication costs, limiting their practical deployment. In this work, we explore how Hybrid Homomorphic Encryption (HHE), a cryptographic protocol that combines symmetric encryption with HE, can be effectively integrated with FL to address both communication and privacy challenges, paving the way for scalable and secure decentralized learning system.
Related papers
- Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy [51.028047763426265]
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information.<n> transmitting semantic-rich data over insecure channels introduces privacy risks.<n>This paper proposes a novel SemCom framework that integrates differential privacy mechanisms to protect sensitive semantic features.
arXiv Detail & Related papers (2025-04-23T08:42:44Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.<n>We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - A New Federated Learning Framework Against Gradient Inversion Attacks [17.3044168511991]
Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data.<n>Recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA)
arXiv Detail & Related papers (2024-12-10T04:53:42Z) - FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.<n>We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.<n>We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
Federated Learning is a privacy-preserving alternative to conventional methods that allow multiple learning clients to share model knowledge without disclosing private data.
This work applies the Fully Homomorphic Encryption scheme to a Federated Learning Neural Network architecture that integrates both classical and quantum layers.
arXiv Detail & Related papers (2024-09-14T01:23:26Z) - Federated Learning is Better with Non-Homomorphic Encryption [1.4110007887109783]
Federated Learning (FL) offers a paradigm that empowers distributed AI model training without collecting raw data.
One of the popular methodologies is employing Homomorphic Encryption (HE)
We propose an innovative framework that synergizes permutation-based compressors with Classical Cryptography.
arXiv Detail & Related papers (2023-12-04T17:37:41Z) - An Efficient and Multi-private Key Secure Aggregation for Federated Learning [41.29971745967693]
We propose an efficient and multi-private key secure aggregation scheme for federated learning.
Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation.
For the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D.
arXiv Detail & Related papers (2023-06-15T09:05:36Z) - FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users [19.209830150036254]
federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm.
Next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server.
This paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme.
arXiv Detail & Related papers (2023-06-08T11:20:00Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.