AgentFly: Extensible and Scalable Reinforcement Learning for LM Agents
- URL: http://arxiv.org/abs/2507.14897v1
- Date: Sun, 20 Jul 2025 10:22:36 GMT
- Title: AgentFly: Extensible and Scalable Reinforcement Learning for LM Agents
- Authors: Renxi Wang, Rifo Ahmad Genadi, Bilal El Bouardi, Yongxin Wang, Fajri Koto, Zhengzhong Liu, Timothy Baldwin, Haonan Li,
- Abstract summary: Language model (LM) agents have gained significant attention for their ability to autonomously complete tasks.<n> reinforcement learning (RL) has been explored to enhance LM's capabilities, such as reasoning and factuality.<n>We built AgentFly, a scalable and Agent-RL framework designed to empower LM agents with a variety of RL algorithms.
- Score: 25.735754822676277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Language model (LM) agents have gained significant attention for their ability to autonomously complete tasks through interactions with environments, tools, and APIs. LM agents are primarily built with prompt engineering or supervised finetuning. At the same time, reinforcement learning (RL) has been explored to enhance LM's capabilities, such as reasoning and factuality. However, the combination of the LM agents and reinforcement learning (Agent-RL) remains underexplored and lacks systematic study. To this end, we built AgentFly, a scalable and extensible Agent-RL framework designed to empower LM agents with a variety of RL algorithms. Our framework supports multi-turn interactions by adapting traditional RL methods with token-level masking. It features a decorator-based interface for defining tools and reward functions, enabling seamless extension and ease of use. To support high-throughput training, we implement asynchronous execution of tool calls and reward computations, and design a centralized resource management system for scalable environment coordination. We also provide a suite of prebuilt tools and environments, demonstrating the framework's effectiveness through successful agent training across multiple tasks.
Related papers
- Agent Lightning: Train ANY AI Agents with Reinforcement Learning [24.13422767414729]
We present Agent Lightning, a framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent.<n>By formulating agent execution as Markov decision process, we define an unified data interface and propose a hierarchical RL algorithm, LightningRL, which contains a credit assignment module.<n>For the system design, we introduce a Training-Agent Disaggregation architecture, and brings agent observability frameworks into agent runtime.
arXiv Detail & Related papers (2025-08-05T17:50:13Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability [106.35604230971396]
Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning.<n>To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch.<n>In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans.<n>After that, the model is trained on downstream tasks to achieve further improvement.
arXiv Detail & Related papers (2025-05-26T17:58:50Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space.<n>MeCo is fine-tuning-free and incurs minimal cost.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents [8.479128275067742]
We present an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex structures in Minecraft.<n>By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints.<n>Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process.
arXiv Detail & Related papers (2024-11-26T09:31:28Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Offline Training of Language Model Agents with Functions as Learnable Weights [39.88545362699836]
We present a novel paradigm of training Large Language Models (LLMs) agents without modifying the LLM weights.
We develop Agentr that employs the LLM to update agents' functions and devise an agent training algorithm with two strategies, roll-back, and early-stop.
With extensive experiments, we showcase that the agent training paradigm could significantly improve the performance of representative LLM agents.
arXiv Detail & Related papers (2024-02-17T18:31:21Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
Large Language Models (LLMs) have emerged as powerful tools for various real-world applications.
Despite their prowess, intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks.
This paper proposes a structured framework tailored for LLM-based AI Agents.
arXiv Detail & Related papers (2023-08-07T09:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.