Learning to Use Tools via Cooperative and Interactive Agents
- URL: http://arxiv.org/abs/2403.03031v4
- Date: Sat, 22 Jun 2024 14:00:56 GMT
- Title: Learning to Use Tools via Cooperative and Interactive Agents
- Authors: Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, Suzan Verberne, Zhaochun Ren,
- Abstract summary: Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
- Score: 58.77710337157665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility. Existing methods employ one single LLM-based agent to iteratively select and execute tools, thereafter incorporating execution results into the next action prediction. Despite their progress, these methods suffer from performance degradation when addressing practical tasks due to: (1) the pre-defined pipeline with restricted flexibility to calibrate incorrect actions, and (2) the struggle to adapt a general LLM-based agent to perform a variety of specialized actions. To mitigate these problems, we propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately. ConAgents introduces two communication protocols to enable the flexible cooperation of agents. To effectively generalize the ConAgents into open-source models, we also propose specialized action distillation, enhancing their ability to perform specialized actions in our framework. Our extensive experiments on three datasets show that the LLMs, when equipped with the ConAgents, outperform baselines with substantial improvement (i.e., up to 14% higher success rate).
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
This paper introduces MorphAgent, a novel framework for decentralized multi-agent collaboration.
MorphAgent employs self-evolving agent profiles, optimized through three key metrics.
Our experimental results show that MorphAgent outperforms traditional static-role MAS in terms of task performance and adaptability to changing requirements.
arXiv Detail & Related papers (2024-10-19T09:10:49Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents.
This paper delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations.
We propose Agent-FLAN to effectively Fine-tune LANguage models for Agents.
arXiv Detail & Related papers (2024-03-19T16:26:10Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
We propose a unified coordinating framework to efficiently utilize existing ML-based agents.
We show that it can effectively utilize different ML-based agents and find better configurations with 1.414.1X speedups on the workload execution time.
arXiv Detail & Related papers (2023-03-10T05:27:23Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
We present novel methods to generate two types of policy explanations for MARL.
Experimental results on three MARL domains demonstrate the scalability of our methods.
A user study shows that the generated explanations significantly improve user performance and increase subjective ratings on metrics such as user satisfaction.
arXiv Detail & Related papers (2022-04-26T20:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.