Open-set Cross Modal Generalization via Multimodal Unified Representation
- URL: http://arxiv.org/abs/2507.14935v1
- Date: Sun, 20 Jul 2025 12:09:19 GMT
- Title: Open-set Cross Modal Generalization via Multimodal Unified Representation
- Authors: Hai Huang, Yan Xia, Shulei Wang, Hanting Wang, Minghui Fang, Shengpeng Ji, Sashuai Zhou, Tao Jin, Zhou Zhao,
- Abstract summary: This paper extends Cross Modal Generalization (CMG) to open-set environments.<n>It addresses the limitations of prior closed-set cross-modal evaluations.<n>We propose MICU, comprising two key components: Fine-Coarse Masked multimodal InfoNCE and Cross modal Unified Jigsaw Puzzles.
- Score: 40.283719790625646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper extends Cross Modal Generalization (CMG) to open-set environments by proposing the more challenging Open-set Cross Modal Generalization (OSCMG) task. This task evaluates multimodal unified representations in open-set conditions, addressing the limitations of prior closed-set cross-modal evaluations. OSCMG requires not only cross-modal knowledge transfer but also robust generalization to unseen classes within new modalities, a scenario frequently encountered in real-world applications. Existing multimodal unified representation work lacks consideration for open-set environments. To tackle this, we propose MICU, comprising two key components: Fine-Coarse Masked multimodal InfoNCE (FCMI) and Cross modal Unified Jigsaw Puzzles (CUJP). FCMI enhances multimodal alignment by applying contrastive learning at both holistic semantic and temporal levels, incorporating masking to enhance generalization. CUJP enhances feature diversity and model uncertainty by integrating modality-agnostic feature selection with self-supervised learning, thereby strengthening the model's ability to handle unknown categories in open-set tasks. Extensive experiments on CMG and the newly proposed OSCMG validate the effectiveness of our approach. The code is available at https://github.com/haihuangcode/CMG.
Related papers
- Multi-modal Mutual-Guidance Conditional Prompt Learning for Vision-Language Models [21.20658517302458]
MuGCP (Multi-modal Mutual-Guidance Conditional Prompt Learning) is a novel paradigm designed for conditional prompt generation.<n> AMG module generates Visual Conditional Prompts (VCP), enhancing the model's performance in multi-modal tasks.<n>MPF mechanism integrates SCP andVCP with contextual prompts, ensuring seamless coordination.
arXiv Detail & Related papers (2025-07-11T08:45:27Z) - BiXFormer: A Robust Framework for Maximizing Modality Effectiveness in Multi-Modal Semantic Segmentation [55.486872677160015]
We reformulate multi-modal semantic segmentation as a mask-level classification task.<n>We propose BiXFormer, which integrates Unified Modality Matching (UMM) and Cross Modality Alignment (CMA)<n> Experiments on both synthetic and real-world multi-modal benchmarks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2025-06-04T08:04:58Z) - Towards Modality Generalization: A Benchmark and Prospective Analysis [68.20973671493203]
This paper introduces Modality Generalization (MG), which focuses on enabling models to generalize to unseen modalities.<n>We propose a comprehensive benchmark featuring multi-modal algorithms and adapt existing methods that focus on generalization.<n>Our work provides a foundation for advancing robust and adaptable multi-modal models, enabling them to handle unseen modalities in realistic scenarios.
arXiv Detail & Related papers (2024-12-24T08:38:35Z) - Towards Multimodal Open-Set Domain Generalization and Adaptation through Self-supervision [9.03028904066824]
We introduce a novel approach to address Multimodal Open-Set Domain Generalization for the first time, utilizing self-supervision.
We propose two innovative multimodal self-supervised pretext tasks: Masked Cross-modal Translation and Multimodal Jigsaw Puzzles.
We extend our approach to tackle also the Multimodal Open-Set Domain Adaptation problem, especially in scenarios where unlabeled data from the target domain is available.
arXiv Detail & Related papers (2024-07-01T17:59:09Z) - Noise-powered Multi-modal Knowledge Graph Representation Framework [52.95468915728721]
The rise of Multi-modal Pre-training highlights the necessity for a unified Multi-Modal Knowledge Graph representation learning framework.<n>We propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking.<n>Our approach achieves SOTA performance across a total of ten datasets, demonstrating its versatility.
arXiv Detail & Related papers (2024-03-11T15:48:43Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - SimMMDG: A Simple and Effective Framework for Multi-modal Domain
Generalization [13.456240733175767]
SimMMDG is a framework to overcome the challenges of achieving domain generalization in multi-modal scenarios.
We employ supervised contrastive learning on the modality-shared features to ensure they possess joint properties and impose distance constraints.
Our framework is theoretically well-supported and achieves strong performance in multi-modal DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon dataset.
arXiv Detail & Related papers (2023-10-30T17:58:09Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
We propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM)
UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions.
Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions.
arXiv Detail & Related papers (2022-07-07T16:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.