Multi-modal Mutual-Guidance Conditional Prompt Learning for Vision-Language Models
- URL: http://arxiv.org/abs/2507.08410v1
- Date: Fri, 11 Jul 2025 08:45:27 GMT
- Title: Multi-modal Mutual-Guidance Conditional Prompt Learning for Vision-Language Models
- Authors: Shijun Yang, Xiang Zhang, Wanqing Zhao, Hangzai Luo, Sheng Zhong, Jinye Peng, Jianping Fan,
- Abstract summary: MuGCP (Multi-modal Mutual-Guidance Conditional Prompt Learning) is a novel paradigm designed for conditional prompt generation.<n> AMG module generates Visual Conditional Prompts (VCP), enhancing the model's performance in multi-modal tasks.<n>MPF mechanism integrates SCP andVCP with contextual prompts, ensuring seamless coordination.
- Score: 21.20658517302458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt learning facilitates the efficient adaptation of Vision-Language Models (VLMs) to various downstream tasks. However, it faces two significant challenges: (1) inadequate modeling of class embedding distributions for unseen instances, leading to suboptimal generalization on novel classes; (2) prevailing methodologies predominantly confine cross-modal alignment to the final output layer of vision and text encoders, which fundamentally limits their capacity to preserve topological consistency with pre-trained multi-modal embedding spaces. To this end, we introduce MuGCP (Multi-modal Mutual-Guidance Conditional Prompt Learning), a novel paradigm designed for conditional prompt generation. MuGCP leverages Multi-modal Large Language Models (MLLMs) as conditional prompt learners to adaptively generate Semantic Conditional Prompts (SCP) that incorporate rich, fine-grained high-level semantic knowledge for image instances. To ensure effective alignment and interaction across the multi-modal space of Vision-Language Models (VLMs), we introduce the Attention Mutual-Guidance (AMG) module, which facilitates interactions between visual and semantic information. Through mutual guidance, the AMG module generates Visual Conditional Prompts (VCP), enhancing the model's performance in multi-modal tasks. Additionally, we present a Multi-Prompt Fusion (MPF) mechanism that integrates SCP and VCP with contextual prompts, ensuring seamless coordination among the different prompts and enhancing the modeling of class embeddings and instance-specific knowledge. Our MuGCP outperforms existing state-of-the-art methods on 14 different datasets. The code will be made available after publication.
Related papers
- MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities [8.517830626176641]
Any2Seg is a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions.
Experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting.
arXiv Detail & Related papers (2024-07-16T03:34:38Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - APoLLo: Unified Adapter and Prompt Learning for Vision Language Models [58.9772868980283]
We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models.
APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.
arXiv Detail & Related papers (2023-12-04T01:42:09Z) - Fine-tuning Multimodal LLMs to Follow Zero-shot Demonstrative Instructions [126.3136109870403]
We introduce a generic and lightweight Visual Prompt Generator Complete module (VPG-C)
VPG-C infers and completes the missing details essential for comprehending demonstrative instructions.
We build DEMON, a comprehensive benchmark for demonstrative instruction understanding.
arXiv Detail & Related papers (2023-08-08T09:32:43Z) - mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image
and Video [89.19867891570945]
mPLUG-2 is a new unified paradigm with modularized design for multi-modal pretraining.
It shares common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement.
It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video.
arXiv Detail & Related papers (2023-02-01T12:40:03Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - MVP: Multi-Stage Vision-Language Pre-Training via Multi-Level Semantic
Alignment [24.720485548282845]
We introduce concepts in both modalities to construct two-level semantic representations for language and vision.
We train the cross-modality model in two stages, namely, uni-modal learning and cross-modal learning.
Our model generates the-state-of-the-art results on several vision and language tasks.
arXiv Detail & Related papers (2022-01-29T14:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.