論文の概要: MUR: Momentum Uncertainty guided Reasoning for Large Language Models
- arxiv url: http://arxiv.org/abs/2507.14958v1
- Date: Sun, 20 Jul 2025 13:36:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.13896
- Title: MUR: Momentum Uncertainty guided Reasoning for Large Language Models
- Title(参考訳): MUR: Momentum Uncertainty Guided Reasoning for Large Language Models
- Authors: Hang Yan, Fangzhi Xu, Rongman Xu, Yifei Li, Jian Zhang, Haoran Luo, Xiaobao Wu, Luu Anh Tuan, Haiteng Zhao, Qika Lin, Jun Liu,
- Abstract要約: 大規模言語モデル(LLM)は、推論集約的なタスクにおいて素晴らしいパフォーマンスを達成した。
MUR(Momentum Uncertainty-Guided Reasoning)は、時間とともに段階的に不確実性を追跡・集約することで、思考予算を批判的推論ステップに割り当てる。
その結果、MURは平均50%以上減少し、精度は0.62-3.37%向上した。
- 参考スコア(独自算出の注目度): 23.766037094142117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have achieved impressive performance on reasoning-intensive tasks, yet optimizing their reasoning efficiency remains an open challenge. While Test-Time Scaling (TTS) improves reasoning quality, it often leads to overthinking, wasting tokens on redundant computations. This work investigates how to efficiently and adaptively guide LLM test-time scaling without additional training. Inspired by the concept of momentum in physics, we propose Momentum Uncertainty-guided Reasoning (MUR), which dynamically allocates thinking budgets to critical reasoning steps by tracking and aggregating stepwise uncertainty over time. To support flexible inference-time control, we introduce gamma-control, a simple mechanism that tunes the reasoning budget via a single hyperparameter. We provide in-depth theoretical proof to support the superiority of MUR in terms of stability and biases. MUR is comprehensively evaluated against various TTS methods across four challenging benchmarks (MATH-500, AIME24, AIME25, and GPQA-diamond) using different sizes of recent Qwen3 models (1.7B, 4B, and 8B). Results demonstrate that MUR reduces computation by over 50% on average while improving accuracy by 0.62-3.37%.
- Abstract(参考訳): 大規模言語モデル(LLM)は推論集約的なタスクにおいて優れたパフォーマンスを達成していますが、推論効率を最適化することはオープンな課題です。
テスト時間スケーリング(TTS)は推論品質を改善するが、冗長な計算でトークンを過度に考え、無駄にすることが多い。
本研究は, LLMテストタイムスケーリングを, 追加トレーニングなしで効率的に, 適応的にガイドする方法について検討する。
物理学における運動量の概念に触発されて、時間とともに段階的に不確実性を追跡することによって、思考予算を批判的推論ステップに動的に割り当てるMomentum Uncertainty-Guided Reasoning (MUR)を提案する。
フレキシブルな推論時間制御をサポートするために,単一ハイパーパラメータによる推論予算を調整するシンプルな機構であるガンマ制御を導入する。
我々は、安定性とバイアスの観点から、MURの優位性を支持するための深い理論的証明を提供する。
MURは4つの挑戦的ベンチマーク(MATH-500、AIME24、AIME25、GPQA-ダイアモンド)で、最新のQwen3モデル(1.7B、4B、8B)の異なるサイズを用いて、様々なTS手法に対して総合的に評価されている。
その結果、MURは計算を平均50%以上削減し、精度は0.62-3.37%向上した。
関連論文リスト
- Token Constraint Decoding Improves Robustness on Question Answering for Large Language Models [4.078176555898098]
我々は,Token Constraint Decoding (TCD)を導入し,評価する。
この単純で効果的な推論時間アルゴリズムは、ノイズのある設定で堅牢性を高めるためにトークンレベルの予測をアライメントする。
本研究は, 実世界の不完全条件下での推論安定性向上のための, 実用的, モデルに依存しないアプローチとして, TCDを確立した。
論文 参考訳(メタデータ) (2025-06-11T05:33:56Z) - Accelerated Test-Time Scaling with Model-Free Speculative Sampling [58.69141724095398]
STAND(Stochastic Adaptive N-gram Drafting)は,新しいモデルフリーな投機的デコード手法である。
従来の自己回帰復号法と比較して,STANDは推論遅延を60~65%削減することを示した。
モデルフリーのアプローチとして、STANDは追加のトレーニングなしで既存の言語モデルに適用できる。
論文 参考訳(メタデータ) (2025-06-05T07:31:18Z) - CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models [56.40065909544213]
大規模言語モデル(LLM)は、テスト時間スケーリングとして知られる、テスト時間計算の増加の恩恵を受ける。
しかし、推論最適化モデルはしばしば単純な問題さえ考え過ぎ、過度に冗長な出力を生成し、トークン効率を低下させる。
1)強化学習は前方推論の情報密度を減少させ,(2)後方連鎖学習は冗長でしばしば不要な検証ステップを促進する。
論文 参考訳(メタデータ) (2025-05-28T06:24:45Z) - Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models [68.96619605651155]
大規模推論モデル(LRM)は、過度に考えることによって出力長を大幅に増加させる可能性がある。
モデル生成推論経路を異なる思考パターンに分割する動的最適化フレームワークを提案する。
提案手法は, 最大12%の精度向上を実現し, トークン使用量を約5,000から3,000に削減する。
論文 参考訳(メタデータ) (2025-05-27T20:59:29Z) - Scaling over Scaling: Exploring Test-Time Scaling Plateau in Large Reasoning Models [7.2703757624760526]
大規模推論モデル(LRM)は、内部テストタイムスケーリングによる推論性能の向上能力を示した。
これらのスケーリング境界を推し進めるにつれて、現実的な限界を理解し、最適なリソース割り当てを達成することが重要な課題となります。
本稿では,テストタイムスケーリングのスケーリングプレートを調査し,TTSPM(Test-Time Scaling Performance Model)を導入する。
論文 参考訳(メタデータ) (2025-05-26T20:58:45Z) - TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling [20.980976778470247]
大規模推論モデル(LRM)は、複雑な数学的、論理的、コーディングタスクに対処する際、例外的な能力を示す。
本稿では,動的チェイン・オブ・ソート(CoT)圧縮のための検証器ベース,トレーニング不要,効率的なフレームワークTrimRを提案する。
論文 参考訳(メタデータ) (2025-05-22T12:23:30Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
大きな推論モデル(LRM)は思考の長い連鎖を生成することによって推論能力を著しく向上させた。
この性能向上は、生成プロセス中の冗長な推論を大幅に増加させるコストが伴う。
本稿では、モデルが独自の推論プロセスを制御することを許容する観点から、過度に検討する新しいフレームワーク、Self-Braking Tuning(SBT)を提案する。
論文 参考訳(メタデータ) (2025-05-20T16:53:40Z) - Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement [22.801244105119025]
精度と計算を効果的にトレードオフすることで、小型モデルによるトークン効率の推論を改善する新しいアルゴリズムを提案する。
まず、SFT後のモデルが推論過程の最適停止点を決定するのに失敗し、冗長かつ反復的な出力が得られることを示す。
MATH500、AMC、AIME24、OlympiadBenchの4つの推論ベンチマークの実験は、TSがs1の予算強制アプローチと比較して非常に効果的であることを示した。
論文 参考訳(メタデータ) (2025-05-12T18:04:39Z) - Dynamic Early Exit in Reasoning Models [13.982812528756504]
長いチェーン・オブ・シンクレット(CoT)生成における再考は、問題解決の効率を低下させるだけでなく、精度損失のリスクも引き起こす。
我々は,LLMが生成時に早期終了によってCoT配列を自己トランケートできる簡易かつ効果的な方法を提案する。
提案手法は追加のトレーニングを必要とせず,既存の o1 ライクな推論 LLM にシームレスに統合することができる。
論文 参考訳(メタデータ) (2025-04-22T13:36:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。