Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
- URL: http://arxiv.org/abs/2507.15066v2
- Date: Fri, 01 Aug 2025 13:03:05 GMT
- Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
- Authors: Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen,
- Abstract summary: Time-series Reasoning for Anomaly (Time-RA) transforms classical time series anomaly detection into a generative, reasoning-intensive task.<n>Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning.
- Score: 22.206380618075183
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.
Related papers
- Can Multimodal LLMs Perform Time Series Anomaly Detection? [55.534264764673296]
We propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD)<n>Our approach transforms time series numerical data into the image format and feed these images into various MLLMs.<n>In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs.
arXiv Detail & Related papers (2025-02-25T03:37:43Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data.
We introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA) to enhance both the detection and interpretation of anomalies.
arXiv Detail & Related papers (2024-11-04T10:28:41Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
We introduce Neural Contextual Anomaly Detection (NCAD), a framework for anomaly detection on time series.
NCAD scales seamlessly from the unsupervised to supervised setting.
We demonstrate empirically on standard benchmark datasets that our approach obtains a state-of-the-art performance.
arXiv Detail & Related papers (2021-07-16T04:33:53Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - A Causal-based Framework for Multimodal Multivariate Time Series
Validation Enhanced by Unsupervised Deep Learning as an Enabler for Industry
4.0 [0.0]
A conceptual validation framework for multi-level contextual anomaly detection is developed.
A Long Short-Term Memory Autoencoder is successfully evaluated to validate the learnt representation of contexts associated to multiple assets of a blast furnace.
A research roadmap is identified to combine causal discovery and representation learning as an enabler for unsupervised Root Cause Analysis applied to the process industry.
arXiv Detail & Related papers (2020-08-05T14:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.