論文の概要: PET Image Reconstruction Using Deep Diffusion Image Prior
- arxiv url: http://arxiv.org/abs/2507.15078v1
- Date: Sun, 20 Jul 2025 18:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.184529
- Title: PET Image Reconstruction Using Deep Diffusion Image Prior
- Title(参考訳): 深部拡散画像を用いたPET画像再構成
- Authors: Fumio Hashimoto, Kuang Gong,
- Abstract要約: 拡散モデルに基づく解剖学的事前誘導PET画像再構成法を提案する。
提案手法は,PET法により誘導される拡散サンプリングとモデル微調整とを交互に行う。
実験結果から,提案するPET再構成法はトレーサー分布とスキャナータイプにまたがって頑健に一般化可能であることがわかった。
- 参考スコア(独自算出の注目度): 3.1878756384085936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown great promise in medical image denoising and reconstruction, but their application to Positron Emission Tomography (PET) imaging remains limited by tracer-specific contrast variability and high computational demands. In this work, we proposed an anatomical prior-guided PET image reconstruction method based on diffusion models, inspired by the deep diffusion image prior (DDIP) framework. The proposed method alternated between diffusion sampling and model fine-tuning guided by the PET sinogram, enabling the reconstruction of high-quality images from various PET tracers using a score function pretrained on a dataset of another tracer. To improve computational efficiency, the half-quadratic splitting (HQS) algorithm was adopted to decouple network optimization from iterative PET reconstruction. The proposed method was evaluated using one simulation and two clinical datasets. For the simulation study, a model pretrained on [$^{18}$F]FDG data was tested on amyloid-negative PET data to assess out-of-distribution (OOD) performance. For the clinical-data validation, ten low-dose [$^{18}$F]FDG datasets and one [$^{18}$F]Florbetapir dataset were tested on a model pretrained on data from another tracer. Experiment results show that the proposed PET reconstruction method can generalize robustly across tracer distributions and scanner types, providing an efficient and versatile reconstruction framework for low-dose PET imaging.
- Abstract(参考訳): 拡散モデルは医用画像の復号化と再構成において大きな可能性を示してきたが、ポジトロン・エミッション・トモグラフィー(PET)イメージングへの応用は、トレーサ固有のコントラスト変動と高い計算要求によって制限されている。
本研究では,拡散モデルに基づく解剖学的事前誘導PET画像再構成手法を提案する。
提案手法は,PETシンクログラムによって導かれる拡散サンプリングとモデル微調整を交互に行い,他のトレーサのデータセットに事前学習したスコア関数を用いて,様々なPETトレーサから高品質な画像の再構成を可能にする。
計算効率を向上させるために, ネットワーク最適化を反復PET再構成から切り離すために, HQSアルゴリズムを採用した。
提案手法は1つのシミュレーションと2つの臨床データセットを用いて評価した。
The simulation study, a model pretrained on [$^{18}$F]FDG data was tested on a amyloid- negative PET data to evaluate out-of-distribution (OOD) performance。
臨床データ検証では,10個の低用量[$^{18}$F]FDGデータセットと1個の[$^{18}$F]Florbetapirデータセットを,他のトレーサのデータから事前学習したモデル上で試験した。
実験結果から,提案手法はトレーサ分布とスキャナータイプにまたがって頑健に一般化可能であり,低線量PET画像のための効率的かつ汎用的な再構成フレームワークを提供する。
関連論文リスト
- Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
本稿では,Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) と呼ばれる深層学習手法を提案する。
Decomp-MoDは、教師なしスコアベースモデルと教師なしディープラーニングネットワークより優れていることを示す。
論文 参考訳(メタデータ) (2025-07-24T01:00:06Z) - Supervised Diffusion-Model-Based PET Image Reconstruction [44.89560992517543]
PET画像再構成の前兆として拡散モデル (DM) が導入された。
PET再構成のための教師付きDMベースアルゴリズムを提案する。
本手法はPETのポアソン確率モデルの非負性性を強制し,PET画像の広い範囲に適応する。
論文 参考訳(メタデータ) (2025-06-30T16:39:50Z) - Personalized MR-Informed Diffusion Models for 3D PET Image Reconstruction [44.89560992517543]
本稿では,PET-MR スキャンのデータセットから対象特異的なPET画像を生成するための簡易な手法を提案する。
私たちが合成した画像は、被験者のMRスキャンからの情報を保持し、高分解能と解剖学的特徴の保持につながる。
18ドルF]FDGデータセットのシミュレーションと実データを用いて,対象特異的な「擬似PET」画像を用いたパーソナライズされた拡散モデルの事前学習により,低カウントデータによる再構成精度が向上することを示す。
論文 参考訳(メタデータ) (2025-06-04T10:24:14Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
ポジトロン・エミッション・トモグラフィ(PET)画像修復にDeep Image prior (DIP) が有効である。
DIPに基づくPET画像復調性能を改善するための自己教師付き事前学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T06:55:00Z) - Fully 3D Implementation of the End-to-end Deep Image Prior-based PET
Image Reconstruction Using Block Iterative Algorithm [0.0]
Deep Image prior (DIP) はPET画像再構成により注目されている。
本稿では, エンドツーエンドDIPベースの完全3次元PET画像再構成手法の実装を初めて試みる。
論文 参考訳(メタデータ) (2022-12-22T16:25:58Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。