Event-based Graph Representation with Spatial and Motion Vectors for Asynchronous Object Detection
- URL: http://arxiv.org/abs/2507.15150v1
- Date: Sun, 20 Jul 2025 23:02:23 GMT
- Title: Event-based Graph Representation with Spatial and Motion Vectors for Asynchronous Object Detection
- Authors: Aayush Atul Verma, Arpitsinh Vaghela, Bharatesh Chakravarthi, Kaustav Chanda, Yezhou Yang,
- Abstract summary: Event-based sensors offer high temporal resolution and irregular latency.<n> converting this data into dense tensors for use in standard neural networks diminishes these inherent advantages.<n>We propose a novel multitemporal representation to better capture spatial structure and temporal changes.
- Score: 20.537672896807063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event-based sensors offer high temporal resolution and low latency by generating sparse, asynchronous data. However, converting this irregular data into dense tensors for use in standard neural networks diminishes these inherent advantages, motivating research into graph representations. While such methods preserve sparsity and support asynchronous inference, their performance on downstream tasks remains limited due to suboptimal modeling of spatiotemporal dynamics. In this work, we propose a novel spatiotemporal multigraph representation to better capture spatial structure and temporal changes. Our approach constructs two decoupled graphs: a spatial graph leveraging B-spline basis functions to model global structure, and a temporal graph utilizing motion vector-based attention for local dynamic changes. This design enables the use of efficient 2D kernels in place of computationally expensive 3D kernels. We evaluate our method on the Gen1 automotive and eTraM datasets for event-based object detection, achieving over a 6% improvement in detection accuracy compared to previous graph-based works, with a 5x speedup, reduced parameter count, and no increase in computational cost. These results highlight the effectiveness of structured graph modeling for asynchronous vision. Project page: eventbasedvision.github.io/eGSMV.
Related papers
- Dynamic Graph Induced Contour-aware Heat Conduction Network for Event-based Object Detection [42.021851148914145]
Event-based Vision Sensors (EVS) have demonstrated significant advantages over traditional RGB frame-based cameras in low-light conditions.<n>This paper proposes a novel dynamic graph induced contour-aware heat conduction network for event stream based object detection.
arXiv Detail & Related papers (2025-05-19T09:44:01Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Pushing the Limits of Asynchronous Graph-based Object Detection with
Event Cameras [62.70541164894224]
We introduce several architecture choices which allow us to scale the depth and complexity of such models while maintaining low computation.
Our method runs 3.7 times faster than a dense graph neural network, taking only 8.4 ms per forward pass.
arXiv Detail & Related papers (2022-11-22T15:14:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Efficient-Dyn: Dynamic Graph Representation Learning via Event-based
Temporal Sparse Attention Network [2.0047096160313456]
Dynamic graph neural networks have received more and more attention from researchers.
We propose a novel dynamic graph neural network, Efficient-Dyn.
It adaptively encodes temporal information into a sequence of patches with an equal amount of temporal-topological structure.
arXiv Detail & Related papers (2022-01-04T23:52:24Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.