論文の概要: Multi-beam Beamforming in RIS-aided MIMO Subject to Reradiation Mask Constraints -- Optimization and Machine Learning Design
- arxiv url: http://arxiv.org/abs/2507.15367v1
- Date: Mon, 21 Jul 2025 08:18:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.32076
- Title: Multi-beam Beamforming in RIS-aided MIMO Subject to Reradiation Mask Constraints -- Optimization and Machine Learning Design
- Title(参考訳): リレーショナルマスク制約を受けるRIS支援MIMOにおけるマルチビームビームフォーミング --最適化と機械学習設計
- Authors: Shumin Wang, Hajar El Hassani, Marco Di Renzo, Marios Poulakis,
- Abstract要約: 再構成可能なインテリジェントサーフェス(RIS)は、将来の無線システムにおけるスペクトル効率の向上と消費電力削減のための新興技術である。
本稿では,Multi-user RIS-aided multiple-input multiple-output (MIMO)通信システムにおける伝送プリコーディング行列とRIS位相シフトベクトルの結合設計について検討する。
- 参考スコア(独自算出の注目度): 27.405741068018045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable intelligent surfaces (RISs) are an emerging technology for improving spectral efficiency and reducing power consumption in future wireless systems. This paper investigates the joint design of the transmit precoding matrices and the RIS phase shift vector in a multi-user RIS-aided multiple-input multiple-output (MIMO) communication system. We formulate a max-min optimization problem to maximize the minimum achievable rate while considering transmit power and reradiation mask constraints. The achievable rate is simplified using the Arimoto-Blahut algorithm, and the problem is broken into quadratic programs with quadratic constraints (QPQC) sub-problems using an alternating optimization approach. To improve efficiency, we develop a model-based neural network optimization that utilizes the one-hot encoding for the angles of incidence and reflection. We address practical RIS limitations by using a greedy search algorithm to solve the optimization problem for discrete phase shifts. Simulation results demonstrate that the proposed methods effectively shape the multi-beam radiation pattern towards desired directions while satisfying reradiation mask constraints. The neural network design reduces the execution time, and the discrete phase shift scheme performs well with a small reduction of the beamforming gain by using only four phase shift levels.
- Abstract(参考訳): 再構成可能なインテリジェントサーフェス(RIS)は、将来の無線システムにおけるスペクトル効率の向上と消費電力削減のための新興技術である。
本稿では,Multi-user RIS-aided multiple-input multiple-output (MIMO)通信システムにおける伝送プリコーディング行列とRIS位相シフトベクトルの結合設計について検討する。
送信電力と放射マスクの制約を考慮しつつ、最大到達率を最大化するために最大分最適化問題を定式化する。
達成確率はArimoto-Blahutアルゴリズムを用いて単純化され、この問題を2次制約付き二次プログラム(QPQC)サブプロブレムに交互最適化アプローチを用いて分割する。
効率を向上させるために,入射角と反射角にワンホット符号化を利用するモデルベースニューラルネットワーク最適化を開発した。
我々は,離散位相シフトの最適化問題を解くために,欲求探索アルゴリズムを用いて現実的なRIS制限に対処する。
シミュレーションの結果,提案手法は反射マスク制約を満足しつつ,望まれる方向に向けて効果的にマルチビーム放射パターンを形成できることが示唆された。
ニューラルネットワーク設計は、実行時間を短縮し、離散位相シフトスキームは、4つの位相シフトレベルのみを用いることで、ビームフォーミングゲインを小さくする。
関連論文リスト
- Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
MISO (Multiple-input Single-output) フレームワークを提案する。
それは複数の導波路で構成されており、多数の低コストアンテナ(PA)を備えている。
PAの位置は、大規模パスと空間の両方にまたがるように再構成することができる。
論文 参考訳(メタデータ) (2025-02-12T18:54:10Z) - A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-block Nonconvex and Nonsmooth Optimization [4.975853671529418]
本研究では,学習可能な2ブロック非平滑問題の解法として,一般学習型交互最小化アルゴリズムLPAMを提案する。
提案するLPAM-netはパラメータ効率が高く,いくつかの最先端手法と比較して良好な性能を示す。
論文 参考訳(メタデータ) (2024-11-10T02:02:32Z) - Joint Age-based Client Selection and Resource Allocation for
Communication-Efficient Federated Learning over NOMA Networks [8.030674576024952]
FL(Federated Learning)では、分散クライアントは、自身のトレーニングデータをローカルに保持しながら、共有グローバルモデルを共同でトレーニングすることができる。
本稿では,非直交多重アクセス(NOMA)を利用した無線ネットワーク上でのFLにおける各ラウンドの総時間消費を最小化することを目的とした,クライアント選択とリソース割り当ての協調最適化問題を定式化する。
さらに、各ラウンドで選択されていないクライアントのFLモデルを予測し、FL性能をさらに向上するために、サーバサイド人工知能ニューラルネットワーク(ANN)を提案する。
論文 参考訳(メタデータ) (2023-04-18T13:58:16Z) - Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO
System [2.9081408997650375]
本稿では、入射点におけるビームフォーミングとIRSにおける位相シフトを共同最適化してエネルギー効率(EE)を最大化する、インテリジェント反射面(IRS)を用いたセルレス大規模マルチインプット多重出力システムについて考察する。
EE問題を解くために,2次変換とラグランジアン双対変換を用いて最適ビームフォーミングと位相シフトを求める反復最適化アルゴリズムを提案する。
さらに,共同ビームフォーミングと位相シフト設計のための深層学習に基づくアプローチを提案する。具体的には,教師なし学習方式を用いて2段階の深層ニューラルネットワークをオフラインでトレーニングし,オンラインに展開する。
論文 参考訳(メタデータ) (2022-12-24T14:58:15Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
再構成可能なインテリジェントサーフェス(RIS)は、将来の6世代(6G)無線通信システムにおいて重要な技術の一つとして推測されている。
本稿では, 基地局におけるビームフォーミング行列とRISにおける位相シフト行列の接合設計について, 深部強化学習(DRL)の最近の進歩を活用して検討する。
提案アルゴリズムは環境から学習し、その振る舞いを徐々に改善するだけでなく、2つの最先端ベンチマークと比較して同等の性能が得られる。
論文 参考訳(メタデータ) (2020-02-24T04:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。