PiMRef: Detecting and Explaining Ever-evolving Spear Phishing Emails with Knowledge Base Invariants
- URL: http://arxiv.org/abs/2507.15393v1
- Date: Mon, 21 Jul 2025 08:53:41 GMT
- Title: PiMRef: Detecting and Explaining Ever-evolving Spear Phishing Emails with Knowledge Base Invariants
- Authors: Ruofan Liu, Yun Lin, Silas Yeo Shuen Yu, Xiwen Teoh, Zhenkai Liang, Jin Song Dong,
- Abstract summary: Phishing emails are a critical component of the cybercrime kill chain due to their wide reach and low cost.<n>We propose PiMRef, the first reference-based phishing email detector that leverages knowledge-based invariants.<n>In a real-world evaluation of 10,183 emails across five university accounts over three years, PiMRef achieved 92.1% precision, 87.9% recall, and a median runtime of 0.05s.
- Score: 15.892817656568063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phishing emails are a critical component of the cybercrime kill chain due to their wide reach and low cost. Their ever-evolving nature renders traditional rule-based and feature-engineered detectors ineffective in the ongoing arms race between attackers and defenders. The rise of large language models (LLMs) further exacerbates the threat, enabling attackers to craft highly convincing phishing emails at minimal cost. This work demonstrates that LLMs can generate psychologically persuasive phishing emails tailored to victim profiles, successfully bypassing nearly all commercial and academic detectors. To defend against such threats, we propose PiMRef, the first reference-based phishing email detector that leverages knowledge-based invariants. Our core insight is that persuasive phishing emails often contain disprovable identity claims, which contradict real-world facts. PiMRef reframes phishing detection as an identity fact-checking task. Given an email, PiMRef (i) extracts the sender's claimed identity, (ii) verifies the legitimacy of the sender's domain against a predefined knowledge base, and (iii) detects call-to-action prompts that push user engagement. Contradictory claims are flagged as phishing indicators and serve as human-understandable explanations. Compared to existing methods such as D-Fence, HelpHed, and ChatSpamDetector, PiMRef boosts precision by 8.8% with no loss in recall on standard benchmarks like Nazario and PhishPot. In a real-world evaluation of 10,183 emails across five university accounts over three years, PiMRef achieved 92.1% precision, 87.9% recall, and a median runtime of 0.05s, outperforming the state-of-the-art in both effectiveness and efficiency.
Related papers
- Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models [69.11679786018206]
Supervised fine-tuning (SFT) aligns large language models with human intent by training them on labeled task-specific data.<n>Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer pairs.<n>We propose a novel clean-data backdoor attack for jailbreaking LLMs.
arXiv Detail & Related papers (2025-05-23T08:13:59Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATE is a framework that enhances phishing detection through a three-component architecture.<n>It is on par with existing deep learning techniques but has better explainability.<n>It addresses the critical divide between automated AI and user trust in phishing detection systems.
arXiv Detail & Related papers (2025-03-22T23:37:35Z) - APOLLO: A GPT-based tool to detect phishing emails and generate explanations that warn users [2.3618982787621]
Large Language Models (LLMs) offer significant promise for text processing in various domains.
We present APOLLO, a tool based on OpenAI's GPT-4o to detect phishing emails and generate explanation messages.
We also conducted a study with 20 participants, comparing four different explanations presented as phishing warnings.
arXiv Detail & Related papers (2024-10-10T14:53:39Z) - Eyes on the Phish(er): Towards Understanding Users' Email Processing Pattern and Mental Models in Phishing Detection [0.4543820534430522]
This study examines how workload affects susceptibility to phishing.
We use eye-tracking technology to observe participants' reading patterns and interactions with phishing emails.
Our results provide concrete evidence that attention to the email sender can reduce phishing susceptibility.
arXiv Detail & Related papers (2024-09-12T02:57:49Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
arXiv Detail & Related papers (2024-02-28T06:28:15Z) - Prompted Contextual Vectors for Spear-Phishing Detection [41.26408609344205]
Spear-phishing attacks present a significant security challenge.<n>We propose a detection approach based on a novel document vectorization method.<n>Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails.
arXiv Detail & Related papers (2024-02-13T09:12:55Z) - SoK: Human-Centered Phishing Susceptibility [4.794822439017277]
We propose a three-stage Phishing Susceptibility Model (PSM) for explaining how humans are involved in phishing detection and prevention.
This model reveals several research gaps that need to be addressed to improve users' detection performance.
arXiv Detail & Related papers (2022-02-16T07:26:53Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
We show that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data.
We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification.
arXiv Detail & Related papers (2020-10-22T11:10:08Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.