ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection
- URL: http://arxiv.org/abs/2402.18093v2
- Date: Fri, 23 Aug 2024 05:03:44 GMT
- Title: ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection
- Authors: Takashi Koide, Naoki Fukushi, Hiroki Nakano, Daiki Chiba,
- Abstract summary: This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
- Score: 2.3999111269325266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of phishing sites and emails poses significant challenges to existing cybersecurity efforts. Despite advances in malicious email filters and email security protocols, problems with oversight and false positives persist. Users often struggle to understand why emails are flagged as potentially fraudulent, risking the possibility of missing important communications or mistakenly trusting deceptive phishing emails. This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails. By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not. Importantly, it offers detailed reasoning for its phishing determinations, assisting users in making informed decisions about how to handle suspicious emails. We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems. We confirmed that our system using GPT-4 has superior detection capabilities with an accuracy of 99.70%. Advanced contextual interpretation by LLMs enables the identification of various phishing tactics and impersonations, making them a potentially powerful tool in the fight against email-based phishing threats.
Related papers
- APOLLO: A GPT-based tool to detect phishing emails and generate explanations that warn users [2.3618982787621]
Large Language Models (LLMs) offer significant promise for text processing in various domains.
We present APOLLO, a tool based on OpenAI's GPT-4o to detect phishing emails and generate explanation messages.
We also conducted a study with 20 participants, comparing four different explanations presented as phishing warnings.
arXiv Detail & Related papers (2024-10-10T14:53:39Z) - Eyes on the Phish(er): Towards Understanding Users' Email Processing Pattern and Mental Models in Phishing Detection [0.4543820534430522]
This study examines how workload affects susceptibility to phishing.
We use eye-tracking technology to observe participants' reading patterns and interactions with phishing emails.
Our results provide concrete evidence that attention to the email sender can reduce phishing susceptibility.
arXiv Detail & Related papers (2024-09-12T02:57:49Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
Spear-phishing attacks present a significant security challenge.
We propose a detection approach based on a novel document vectorization method.
Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails.
arXiv Detail & Related papers (2024-02-13T09:12:55Z) - From Chatbots to PhishBots? -- Preventing Phishing scams created using
ChatGPT, Google Bard and Claude [3.7741995290294943]
This study explores the potential of using four popular commercially available Large Language Models to generate phishing attacks.
We build a BERT-based automated detection tool that can be used for the early detection of malicious prompts.
Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts.
arXiv Detail & Related papers (2023-10-29T22:52:40Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Falling for Phishing: An Empirical Investigation into People's Email
Response Behaviors [10.841507821036458]
Despite sophisticated phishing email detection systems, humans continue to be tricked by phishing emails.
We have carried out an empirical study to investigate people's thought processes when reading their emails.
We identify eleven factors that influence people's response decisions to both phishing and legitimate emails.
arXiv Detail & Related papers (2021-08-10T16:19:01Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Learning with Weak Supervision for Email Intent Detection [56.71599262462638]
We propose to leverage user actions as a source of weak supervision to detect intents in emails.
We develop an end-to-end robust deep neural network model for email intent identification.
arXiv Detail & Related papers (2020-05-26T23:41:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.