論文の概要: Privacy-Preserving Multimodal News Recommendation through Federated Learning
- arxiv url: http://arxiv.org/abs/2507.15460v1
- Date: Mon, 21 Jul 2025 10:14:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.35304
- Title: Privacy-Preserving Multimodal News Recommendation through Federated Learning
- Title(参考訳): フェデレートラーニングによるプライバシー保護型マルチモーダルニュースレコメンデーション
- Authors: Mehdi Khalaj, Shahrzad Golestani Najafabadi, Julita Vassileva,
- Abstract要約: 本稿では,ニュースレコメンデーションのための新しいマルチモーダル・フェデレーション・ラーニング・ベースのアプローチを提案する。
このフレームワークは、リコメンデーションモデルを大規模なサーバ保守型ニュースモデルと、サーバとクライアント間で共有される軽量ユーザモデルに分割する。
実世界のニュースデータセットの実験は、既存のシステムと比較して強い性能を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized News Recommendation systems (PNR) have emerged as a solution to information overload by predicting and suggesting news items tailored to individual user interests. However, traditional PNR systems face several challenges, including an overreliance on textual content, common neglect of short-term user interests, and significant privacy concerns due to centralized data storage. This paper addresses these issues by introducing a novel multimodal federated learning-based approach for news recommendation. First, it integrates both textual and visual features of news items using a multimodal model, enabling a more comprehensive representation of content. Second, it employs a time-aware model that balances users' long-term and short-term interests through multi-head self-attention networks, improving recommendation accuracy. Finally, to enhance privacy, a federated learning framework is implemented, enabling collaborative model training without sharing user data. The framework divides the recommendation model into a large server-maintained news model and a lightweight user model shared between the server and clients. The client requests news representations (vectors) and a user model from the central server, then computes gradients with user local data, and finally sends their locally computed gradients to the server for aggregation. The central server aggregates gradients to update the global user model and news model. The updated news model is further used to infer news representation by the server. To further safeguard user privacy, a secure aggregation algorithm based on Shamir's secret sharing is employed. Experiments on a real-world news dataset demonstrate strong performance compared to existing systems, representing a significant advancement in privacy-preserving personalized news recommendation.
- Abstract(参考訳): パーソナライズされたニュースレコメンデーションシステム(PNR)は、個人の興味に合ったニュースアイテムを予測し、提案することで、情報過負荷の解決策として登場した。
しかしながら、従来のPNRシステムでは、テキストコンテンツへの過度な依存、短期的ユーザの関心の無視、集中型データストレージによる重要なプライバシー上の懸念など、いくつかの課題に直面している。
本稿では,ニュースレコメンデーションのための新しいマルチモーダル・フェデレーション・ラーニング・ベースのアプローチを導入することで,これらの課題に対処する。
まず、マルチモーダルモデルを用いてニュース記事のテキスト的特徴と視覚的特徴を統合し、より包括的なコンテンツ表現を可能にする。
第二に、マルチヘッド・セルフアテンション・ネットワークを通じてユーザの長期的および短期的関心のバランスを保ち、レコメンデーションの精度を向上させるタイムアウェア・モデルを採用している。
最後に、プライバシを強化するために、ユーザデータを共有せずに協調的なモデルトレーニングを可能にするフェデレーション学習フレームワークが実装されている。
このフレームワークは、リコメンデーションモデルを大規模なサーバ保守型ニュースモデルと、サーバとクライアント間で共有される軽量ユーザモデルに分割する。
クライアントは、中央サーバからニュース表現(ベクタ)とユーザーモデルを要求し、その後、ユーザのローカルデータで勾配を計算し、最後にローカルに計算された勾配をサーバに送信して集約する。
中央サーバは、グローバルユーザモデルとニュースモデルを更新するための勾配を集約する。
更新されたニュースモデルは、サーバによるニュース表現を推論するためにさらに使用される。
ユーザのプライバシーをさらに保護するために、Shamirの秘密共有に基づくセキュアな集約アルゴリズムが採用されている。
実世界のニュースデータセットの実験は、既存のシステムと比較して強力なパフォーマンスを示し、プライバシー保護によるパーソナライズされたニュースレコメンデーションの大幅な進歩を示している。
関連論文リスト
- GLoCIM: Global-view Long Chain Interest Modeling for news recommendation [59.3925442282951]
候補者のニュース記事をユーザーに正確に推薦することは、常にニュースレコメンデーションシステムの中核的な課題である。
近年の取り組みは、全ユーザのクリックニュースシーケンスによって構築されたグローバルなクリックグラフにおいて、局所的なサブグラフ情報を抽出することに集中している。
本稿では,Global-view Long Chain Interests Modeling for News recommendation (GLoCIM)を提案する。
論文 参考訳(メタデータ) (2024-08-01T18:17:25Z) - FedRKG: A Privacy-preserving Federated Recommendation Framework via
Knowledge Graph Enhancement [20.214339212091012]
フェデレートラーニング(FL)は、リコメンデーションシステムでデータプライバシをローカルにトレーニングする上で有望なアプローチとして登場した。
最近のグラフニューラルネットワーク(GNN)は、ユーザとアイテム間の高次インタラクションをキャプチャできるため、リコメンデーションタスクで人気を集めている。
本稿では,グローバル知識グラフ(KG)を構築・維持する新しいフェデレーションレコメンデーションシステムであるFedRKGを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:38:21Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - VLSNR:Vision-Linguistics Coordination Time Sequence-aware News
Recommendation [0.0]
マルチモーダルセマンティクスは、ユーザの時間的および長期的関心の理解を高めるのに有用である。
本研究では,視覚言語による時系列ニュースレコメンデーションを提案する。
また,大規模なマルチモーダルニュースレコメンデーションデータセットV-MINDを構築した。
論文 参考訳(メタデータ) (2022-10-06T14:27:37Z) - Content Popularity Prediction in Fog-RANs: A Clustered Federated
Learning Based Approach [66.31587753595291]
本稿では,ローカルユーザとモバイルユーザの両面からコンテンツの人気度を統合した,モビリティに配慮した新しい人気予測ポリシーを提案する。
ローカルユーザにとって、コンテンツの人気は、ローカルユーザやコンテンツの隠された表現を学習することによって予測される。
モバイルユーザーにとって、コンテンツの人気はユーザー好みの学習によって予測される。
論文 参考訳(メタデータ) (2022-06-13T03:34:00Z) - Decentralized Collaborative Learning Framework for Next POI
Recommendation [39.65626819903099]
Next Point-of-Interest (POI)レコメンデーションは位置情報ベースのソーシャルネットワーク(LBSN)において必須の機能となっている。
正確なレコメンデーションには、膨大な量の履歴チェックインデータが必要であるため、位置情報に敏感なデータをクラウドサーバで処理する必要があるため、ユーザのプライバシを脅かすことになる。
本稿では,POIレコメンデーション(DCLR)のための分散協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-30T11:00:11Z) - Aggregation Service for Federated Learning: An Efficient, Secure, and
More Resilient Realization [22.61730495802799]
本稿では,学習過程を通じて個々のモデル更新を効率よく保護するシステム設計を提案する。
本システムは,実用性能で,ベースラインに匹敵する精度を実現している。
論文 参考訳(メタデータ) (2022-02-04T05:03:46Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
フェデレーション学習は、データをデバイス上でプライベートにしながら、複数のクライアントにわたるモデルの分散トレーニングを記述する。
本稿では,サーバがクライアント固有のモデルパラメータに対して事前分布のパラメータを提供する階層的潜在変数モデルとして,サーバが設定したフェデレーション学習プロセスについて考察する。
我々は,単純なガウス先行とよく知られた期待最大化(EM)アルゴリズムのハードバージョンを用いて,そのようなモデルの学習は,フェデレーション学習環境における最も一般的なアルゴリズムであるFedAvgに対応することを示す。
論文 参考訳(メタデータ) (2021-11-19T12:58:59Z) - Timely Communication in Federated Learning [65.1253801733098]
我々は,パラメータサーバ(PS)が,クラウドサーバにクライアントデータを集中的に格納することなく,$n$クライアントを用いてグローバルモデルを訓練するグローバルラーニングフレームワークを検討する。
提案されたスキームでは、各イテレーションでPSは$m$のクライアントを待ち、現在のモデルを送信する。
各クライアントが経験する情報の平均年齢を見つけ、与えられた$n$の年齢最適値である$m$と$k$を数値的に特徴付ける。
論文 参考訳(メタデータ) (2020-12-31T18:52:08Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - CSRN: Collaborative Sequential Recommendation Networks for News
Retrieval [26.852710435482997]
ニュースアプリが紙ベースのメディアの人気を引き継ぎ、パーソナライゼーションの絶好の機会となった。
リカレントニューラルネットワーク(RNN)ベースのシーケンシャルレコメンデーションは、ユーザの最近のブラウジング履歴を利用して将来のアイテムを予測する一般的なアプローチである。
本稿では、RNNに基づくシーケンシャルレコメンデーションとUserCFのキーアイデアを統合するためのディープニューラルネットワークのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-07T13:25:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。