The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
- URL: http://arxiv.org/abs/2507.15465v2
- Date: Wed, 23 Jul 2025 20:55:41 GMT
- Title: The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
- Authors: Sungmin Yun, Seonyong Park, Hwayong Nam, Younjoo Lee, Gunjun Lee, Kwanhee Kyung, Sangpyo Kim, Nam Sung Kim, Jongmin Kim, Hyungyo Kim, Juhwan Cho, Seungmin Baek, Jung Ho Ahn,
- Abstract summary: This paper argues that recent architectural shifts, namely Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE), challenge the premise of specialized attention hardware.<n>The central challenge for next-generation Transformers is no longer accelerating single memory-bound layer.<n>Instead, the focus must shift to designing balanced systems with sufficient compute memory capacity, memory bandwidth, and high-bandwidth interconnects to manage the diverse demands of large-scale models.
- Score: 5.10053312713569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational workloads composing traditional Transformer models are starkly bifurcated. Multi-Head Attention (MHA) is memory-bound, with low arithmetic intensity, while feedforward layers are compute-bound. This dichotomy has long motivated research into specialized hardware to mitigate the MHA bottleneck. This paper argues that recent architectural shifts, namely Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE), challenge the premise of specialized attention hardware. We make two key observations. First, the arithmetic intensity of MLA is over two orders of magnitude greater than that of MHA, shifting it close to a compute-bound regime well-suited for modern accelerators like GPUs. Second, by distributing MoE experts across a pool of accelerators, their arithmetic intensity can be tuned through batching to match that of the dense layers, creating a more balanced computational profile. These findings reveal a diminishing need for specialized attention hardware. The central challenge for next-generation Transformers is no longer accelerating a single memory-bound layer. Instead, the focus must shift to designing balanced systems with sufficient compute, memory capacity, memory bandwidth, and high-bandwidth interconnects to manage the diverse demands of large-scale models.
Related papers
- L3: DIMM-PIM Integrated Architecture and Coordination for Scalable Long-Context LLM Inference [6.886434948681708]
Large Language Models (LLMs) increasingly require processing long text sequences, but GPU memory limitations force difficult trade-offs between memory capacity and bandwidth.<n>We identify that the critical memory bottleneck lies in the decoding phase of multi-head attention.<n>We propose L3, a hardware-software co-designed system integrating DIMM-PIM and GPU devices.
arXiv Detail & Related papers (2025-04-24T14:14:07Z) - Sliding Window Attention Training for Efficient Large Language Models [55.56483740523027]
We introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training.<n>This paper first attributes the inefficiency of Transformers to the attention sink phenomenon.<n>We replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention.
arXiv Detail & Related papers (2025-02-26T05:31:44Z) - Towards 3D Acceleration for low-power Mixture-of-Experts and Multi-Head Attention Spiking Transformers [5.1210823165448]
Spiking Neural Networks(SNNs) provide a brain-inspired and event-driven mechanism that is believed to be critical to unlock energy-efficient deep learning.<n>This paper introduces the first 3D hardware architecture and design methodology for Mixture-of-Experts and Multi-Head Attention spiking transformers.
arXiv Detail & Related papers (2024-12-07T05:15:05Z) - Look Every Frame All at Once: Video-Ma$^2$mba for Efficient Long-form Video Understanding with Multi-Axis Gradient Checkpointing [52.050036778325094]
Video-Ma$2$mba is a novel architecture that incorporates State Space Models (SSMs) within the Mamba-2 framework.<n>Our approach significantly reduces the memory footprint compared to standard gradient checkpointing.<n>By maintaining a detailed capture of temporal dynamics, our model improves the accuracy and relevance of responses in long video understanding tasks.
arXiv Detail & Related papers (2024-11-29T04:12:13Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - MAS-Attention: Memory-Aware Stream Processing for Attention Acceleration on Resource-Constrained Edge Devices [24.1144641404561]
We propose a scheme for exact attention inference acceleration on memory-constrained edge accelerators.<n>We show up to 2.75x speedup and 54% reduction in energy consumption as compared to the state-of-the-art attention fusion method (FLAT) in the edge computing scenario.
arXiv Detail & Related papers (2024-11-20T19:44:26Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Gated Slot Attention for Efficient Linear-Time Sequence Modeling [59.019501274074564]
Gated Slot Attention (GSA) enhances Attention with Bounded-memory-Control (ABC)
GSA incorporates a gating mechanism inspired by Gated Linear Attention (GLA)
arXiv Detail & Related papers (2024-09-11T09:49:50Z) - Duplex: A Device for Large Language Models with Mixture of Experts, Grouped Query Attention, and Continuous Batching [2.863328705885669]
We observe that conventional computing devices have limitations when processing the MoE and attention layers.
To address these challenges, we propose xPU tailored for low-Op/B and LogicPIM tailored for low-Op/B operations.
arXiv Detail & Related papers (2024-09-02T10:21:21Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
We introduce OPIMA, a processing-in-memory (PIM)-based machine learning accelerator.
PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks.
We show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
arXiv Detail & Related papers (2024-07-11T06:12:04Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.