DeSamba: Decoupled Spectral Adaptive Framework for 3D Multi-Sequence MRI Lesion Classification
- URL: http://arxiv.org/abs/2507.15487v2
- Date: Tue, 22 Jul 2025 02:14:23 GMT
- Title: DeSamba: Decoupled Spectral Adaptive Framework for 3D Multi-Sequence MRI Lesion Classification
- Authors: Dezhen Wang, Sheng Miao, Rongxin Chai, Jiufa Cui,
- Abstract summary: DeSamba is a framework designed to extract decoupled representations and adaptively fuse spatial and spectral features for lesion classification.<n>DeSamba achieves 62.10% Top-1 accuracy, 63.62% F1-score, 87.71% AUC, and 93.55% Top-3 accuracy on an external validation set.
- Score: 0.6749750044497732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) sequences provide rich spatial and frequency domain information, which is crucial for accurate lesion classification in medical imaging. However, effectively integrating multi-sequence MRI data for robust 3D lesion classification remains a challenge. In this paper, we propose DeSamba (Decoupled Spectral Adaptive Network and Mamba-Based Model), a novel framework designed to extract decoupled representations and adaptively fuse spatial and spectral features for lesion classification. DeSamba introduces a Decoupled Representation Learning Module (DRLM) that decouples features from different MRI sequences through self-reconstruction and cross-reconstruction, and a Spectral Adaptive Modulation Block (SAMB) within the proposed SAMNet, enabling dynamic fusion of spectral and spatial information based on lesion characteristics. We evaluate DeSamba on two clinically relevant 3D datasets. On a six-class spinal metastasis dataset (n=1,448), DeSamba achieves 62.10% Top-1 accuracy, 63.62% F1-score, 87.71% AUC, and 93.55% Top-3 accuracy on an external validation set (n=372), outperforming all state-of-the-art (SOTA) baselines. On a spondylitis dataset (n=251) involving a challenging binary classification task, DeSamba achieves 70.00%/64.52% accuracy and 74.75/73.88 AUC on internal and external validation sets, respectively. Ablation studies demonstrate that both DRLM and SAMB significantly contribute to overall performance, with over 10% relative improvement compared to the baseline. Our results highlight the potential of DeSamba as a generalizable and effective solution for 3D lesion classification in multi-sequence medical imaging.
Related papers
- Performance Analysis of Deep Learning Models for Femur Segmentation in MRI Scan [5.5193366921929155]
We evaluate and compare the performance of three CNN-based models, i.e., U-Net, Attention U-Net, and U-KAN, and one transformer-based model, SAM 2.<n>The dataset comprises 11,164 MRI scans with detailed annotations of femoral regions.<n> Attention U-Net achieves the highest overall scores, while U-KAN demonstrated superior performance in anatomical regions with a smaller region of interest.
arXiv Detail & Related papers (2025-04-05T05:47:56Z) - SAMRI-2: A Memory-based Model for Cartilage and Meniscus Segmentation in 3D MRIs of the Knee Joint [0.7879983966759583]
This study introduces a deep learning (DL) method for cartilage and meniscus segmentation from 3D MRIs using memory-based VFMs.<n>We trained four AI models-a CNN-based 3D-VNet, two automatic transformer-based models (SaMRI2D and SaMRI3D), and a transformer-based promptable memory-based VFM (SAMRI-2)-on 3D knee MRIs from 270 patients.<n>SAMRI-2 model, trained with HSS, outperformed all other models, achieving an average improvement of 5 points, with a peak improvement of 12 points for tibial cartilage.
arXiv Detail & Related papers (2025-02-14T21:18:01Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically important imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize data, for training segmentation models for underrepresented modalities.<n>We present MRGen, a data engine for controllable medical image synthesis conditioned on text prompts and segmentation masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - MedSegMamba: 3D CNN-Mamba Hybrid Architecture for Brain Segmentation [15.514511820130474]
We develop a 3D patch-based hybrid CNN-Mamba model for subcortical brain segmentation.
Our model's performance was validated against several benchmarks.
arXiv Detail & Related papers (2024-09-12T02:19:19Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Synthesis-based Imaging-Differentiation Representation Learning for
Multi-Sequence 3D/4D MRI [16.725225424047256]
We propose a sequence-to-sequence generation framework (Seq2Seq) for imaging-differentiation representation learning.
In this study, not only do we propose arbitrary 3D/4D sequence generation within one model to generate any specified target sequence, but also we are able to rank the importance of each sequence.
We conduct extensive experiments using three datasets including a toy dataset of 20,000 simulated subjects, a brain MRI dataset of 1,251 subjects, and a breast MRI dataset of 2,101 subjects.
arXiv Detail & Related papers (2023-02-01T15:37:35Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.