論文の概要: An aerial color image anomaly dataset for search missions in complex forested terrain
- arxiv url: http://arxiv.org/abs/2507.15492v1
- Date: Mon, 21 Jul 2025 10:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.364805
- Title: An aerial color image anomaly dataset for search missions in complex forested terrain
- Title(参考訳): 複雑な森林地帯における探索任務のための空中カラー画像異常データセット
- Authors: Rakesh John Amala Arokia Nathan, Matthias Gessner, Nurullah Özkan, Marius Bock, Mohamed Youssef, Maximilian Mews, Björn Piltz, Ralf Berger, Oliver Bimber,
- Abstract要約: ドイツの農村部で家族が殺害された後、当局は大規模な捜索にもかかわらず、巨大な森で容疑者を見つけることができなかった。
捜索を助けるため、調査機は高解像度の空中画像を撮影した。
植生が密集し、小さな手がかりが見つからないため、自動分析は効果がなく、群集調査のイニシアチブとなった。
この試みは、隠された実世界の条件下でラベル付けされた、検出が難しい異常のユニークなデータセットを生み出した。
- 参考スコア(独自算出の注目度): 1.5236778491079315
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: After a family murder in rural Germany, authorities failed to locate the suspect in a vast forest despite a massive search. To aid the search, a research aircraft captured high-resolution aerial imagery. Due to dense vegetation obscuring small clues, automated analysis was ineffective, prompting a crowd-search initiative. This effort produced a unique dataset of labeled, hard-to-detect anomalies under occluded, real-world conditions. It can serve as a benchmark for improving anomaly detection approaches in complex forest environments, supporting manhunts and rescue operations. Initial benchmark tests showed existing methods performed poorly, highlighting the need for context-aware approaches. The dataset is openly accessible for offline processing. An additional interactive web interface supports online viewing and dynamic growth by allowing users to annotate and submit new findings.
- Abstract(参考訳): ドイツの農村部で家族が殺害された後、当局は大規模な捜索にもかかわらず、巨大な森で容疑者を見つけることができなかった。
捜索を助けるため、調査機は高解像度の空中画像を撮影した。
植生が密集し、小さな手がかりが見つからないため、自動分析は効果が無く、群集調査のイニシアチブに繋がった。
この試みは、隠された実世界の条件下でラベル付けされた、検出が難しい異常のユニークなデータセットを生み出した。
複雑な森林環境における異常検出アプローチを改善するためのベンチマークとして機能し、マンハントや救助活動を支援する。
最初のベンチマークテストでは、既存のメソッドのパフォーマンスが悪く、コンテキスト認識アプローチの必要性が強調された。
データセットは、オフライン処理で公開アクセス可能である。
さらにインタラクティブなWebインターフェースは、ユーザが注釈を付け、新しい発見を提出できるようにすることで、オンライン視聴と動的成長をサポートする。
関連論文リスト
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerの総合的な視覚異常検出ベンチマークを提案する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Burnt area extraction from high-resolution satellite images based on
anomaly detection [1.8843687952462738]
本稿では,ベクトル量子化変分オートエンコーダ(VQ-VAE)を用いて,非教師なし領域抽出を行う。
VQ-VAEをエンド・ツー・エンドのフレームワークに統合し、専用の植生、水、明るさ指数を用いて、集中的な後処理を行う。
論文 参考訳(メタデータ) (2023-08-25T13:25:27Z) - The Eyecandies Dataset for Unsupervised Multimodal Anomaly Detection and
Localization [1.3124513975412255]
Eyecandiesは、教師なしの異常検出とローカライゼーションのための新しいデータセットである。
複数の雷条件下で、手続き的に生成されたキャンディーのフォトリアリスティック画像が制御された環境でレンダリングされる。
論文 参考訳(メタデータ) (2022-10-10T11:19:58Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
最先端のオブジェクト検出手法は、小さくて密度の高いオブジェクトを特定するのにほとんど失敗している。
本稿では,特徴抽出プロセスを改善する小型物体検出パイプラインを提案する。
未確認データセットにおけるオブジェクト識別の劣化を緩和できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:16:35Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Small or Far Away? Exploiting Deep Super-Resolution and Altitude Data
for Aerial Animal Surveillance [3.8015092217142223]
本研究では,全体的注目ネットワークに基づく超解像手法と,カスタム構築された高度データ利用ネットワークにより,実環境における検出の有効性が向上することを示す。
SAVMAP と AED の2つの大型航空捕獲動物データセットを用いて,本システムの評価を行った。
論文 参考訳(メタデータ) (2021-11-12T17:30:55Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
イベント検出は輸送において重要なタスクであり、そのタスクは大規模なイベントが都市交通ネットワークの大部分を破壊した時点のポイントを検出することである。
空間的および時間的交通パターンを完全に把握することは課題であるが、効果的な異常検出には重要な役割を果たす。
我々は, 交通条件を表す有向重み付きグラフ群において, 時間間隔毎に異常を検知する新しい手法で問題を定式化する。
論文 参考訳(メタデータ) (2020-12-25T22:36:22Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
BEE(Batch Exploration with Examples)は、重要状態の画像の少ない数の人間がガイドする状態空間の関連領域を探索する。
BEEは、シミュレーションと本物のフランカロボットの両方で、視覚ベースの操作に挑戦することができる。
論文 参考訳(メタデータ) (2020-10-22T17:49:25Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。