論文の概要: Dense-depth map guided deep Lidar-Visual Odometry with Sparse Point Clouds and Images
- arxiv url: http://arxiv.org/abs/2507.15496v1
- Date: Mon, 21 Jul 2025 10:58:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.36665
- Title: Dense-depth map guided deep Lidar-Visual Odometry with Sparse Point Clouds and Images
- Title(参考訳): 疎点雲と画像を用いた深度ライダー・ビジュアルオドメトリーによる深度地図の作成
- Authors: JunYing Huang, Ao Xu, DongSun Yong, KeRen Li, YuanFeng Wang, Qi Qin,
- Abstract要約: オドメトリは、自律システムにとって、自己ローカライゼーションとナビゲーションにとって重要なタスクである。
我々は,LiDARの点雲と画像を統合し,正確なポーズ推定を行う新しいLiDAR-Visual odometryフレームワークを提案する。
提案手法は,最先端のビジュアルおよびLiDARオドメトリー法と比較して,類似あるいは優れた精度とロバスト性を実現する。
- 参考スコア(独自算出の注目度): 4.320220844287486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Odometry is a critical task for autonomous systems for self-localization and navigation. We propose a novel LiDAR-Visual odometry framework that integrates LiDAR point clouds and images for accurate and robust pose estimation. Our method utilizes a dense-depth map estimated from point clouds and images through depth completion, and incorporates a multi-scale feature extraction network with attention mechanisms, enabling adaptive depth-aware representations. Furthermore, we leverage dense depth information to refine flow estimation and mitigate errors in occlusion-prone regions. Our hierarchical pose refinement module optimizes motion estimation progressively, ensuring robust predictions against dynamic environments and scale ambiguities. Comprehensive experiments on the KITTI odometry benchmark demonstrate that our approach achieves similar or superior accuracy and robustness compared to state-of-the-art visual and LiDAR odometry methods.
- Abstract(参考訳): オドメトリは、自律システムにとって、自己ローカライゼーションとナビゲーションにとって重要なタスクである。
我々は,LiDAR点雲と画像を統合し,高精度でロバストなポーズ推定を行う新しいLiDAR-Visual odometryフレームワークを提案する。
本手法は, 点雲と画像から推定した深度分布図を用いて, 注意機構を備えたマルチスケール特徴抽出ネットワークを構築し, 適応的な深度認識表現を実現する。
さらに, 密集深度情報を活用し, 流れの推定を洗練し, 閉塞性領域の誤差を軽減する。
我々の階層的なポーズ改善モジュールは、動きの推定を段階的に最適化し、動的環境に対する堅牢な予測とスケールのあいまいさを保証する。
KITTI odometry ベンチマークの総合的な実験により,本手法は最先端のビジュアルおよびLiDAR odometry 法と比較して,類似あるいは優れた精度とロバスト性が得られることが示された。
関連論文リスト
- Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
奥行き完了のための既存の手法は、厳密に制約された設定で動作する。
単眼深度推定の進歩に触発されて,画像条件の深度マップ生成として深度補完を再構成した。
Marigold-DCは、単分子深度推定のための事前訓練された潜伏拡散モデルを構築し、試験時間ガイダンスとして深度観測を注入する。
論文 参考訳(メタデータ) (2024-12-18T00:06:41Z) - ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
本研究では,新しい単分子深度推定法であるScaleDepthを提案する。
提案手法は,距離深度をシーンスケールと相対深度に分解し,セマンティック・アウェア・スケール予測モジュールを用いて予測する。
本手法は,室内と屋外の両方のシーンを統一した枠組みで距離推定する。
論文 参考訳(メタデータ) (2024-07-11T05:11:56Z) - V-FUSE: Volumetric Depth Map Fusion with Long-Range Constraints [6.7197802356130465]
本稿では,Multi-View Stereo(MVS)アルゴリズムによって生成された深度マップと信頼マップのセットを入力として受け入れ,改良する学習ベースの深度マップ融合フレームワークを提案する。
また、各線に沿った深度仮説探索空間を減らすために、より大きな融合サブネットワークと共に訓練された深度探索ウィンドウ推定サブネットワークを導入する。
本手法は,データから直接,深度コンセンサスと可視性制約の違反をモデル化することを学ぶ。
論文 参考訳(メタデータ) (2023-08-17T00:39:56Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
単眼深度推定と視覚慣性計測を統合した視覚慣性深度推定パイプラインを提案する。
提案手法は, 疎度度に対する大域的スケールとシフトアライメントを行い, 続いて学習に基づく高密度アライメントを行う。
本研究では,TartanAir と VOID のデータセットを用いて,密集したスケールアライメントによるRMSE の最大30%の削減を観測した。
論文 参考訳(メタデータ) (2023-03-21T18:47:34Z) - Visual Attention-based Self-supervised Absolute Depth Estimation using
Geometric Priors in Autonomous Driving [8.045833295463094]
空間的注意とチャネルの注意をすべてのステージに適用する,完全に視覚的注意に基づく奥行き(VADepth)ネットワークを導入する。
VADepthネットワークは、空間的およびチャネル的次元に沿った特徴の依存関係を長距離にわたって連続的に抽出することにより、重要な詳細を効果的に保存することができる。
KITTIデータセットの実験結果は、このアーキテクチャが最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2022-05-18T08:01:38Z) - Improving Monocular Visual Odometry Using Learned Depth [84.05081552443693]
単眼深度推定を応用して視力計測(VO)を改善する枠組みを提案する。
我々のフレームワークの中核は、多様なシーンに対して強力な一般化能力を持つ単眼深度推定モジュールである。
現在の学習型VO法と比較して,本手法は多様なシーンに対してより強力な一般化能力を示す。
論文 参考訳(メタデータ) (2022-04-04T06:26:46Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
本稿では,事前学習した教師付き単分子深度ネットワークに対する自己教師付き学習手法を提案する。
本手法は移動ロボットナビゲーションなどの様々な応用に有用であり,多様な環境に適用可能である。
論文 参考訳(メタデータ) (2022-03-10T12:28:42Z) - Differentiable Diffusion for Dense Depth Estimation from Multi-view
Images [31.941861222005603]
深度マップへの拡散がRGB監督からの多視点再投射誤差を最小限に抑えるように、細かな点集合を最適化することにより、深度を推定する手法を提案する。
また,複雑なシーン再構成に必要な50k以上のポイントを同時に最適化できる効率的な最適化ルーチンを開発した。
論文 参考訳(メタデータ) (2021-06-16T16:17:34Z) - Self-supervised Visual-LiDAR Odometry with Flip Consistency [7.883162238852467]
自己監督型視覚ライダー・オドメトリー(Self-VLO)フレームワークを提案する。
3dlidarポイントから投影された単眼画像とスパース深度マップの両方を入力として取得する。
エンドツーエンドの学習方法でポーズと深さの推定を生成する。
論文 参考訳(メタデータ) (2021-01-05T02:42:59Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
本稿では,軽量で密結合の深い深度ネットワークと視覚慣性オドメトリーシステムを提案する。
我々は、初期深度予測の精度を高めるために、以前にVIOから切り離されたスパース特徴を持つネットワークを提供する。
本稿では,ネットワークとコードヤコビアンでのみGPUアクセラレーションを活用しながら,シングルスレッド実行でリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-12-18T09:42:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。