Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised
Adaptation
- URL: http://arxiv.org/abs/2210.03792v1
- Date: Fri, 7 Oct 2022 19:32:55 GMT
- Title: Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised
Adaptation
- Authors: Wenjing Wang, Zhengbo Xu, Haofeng Huang, Jiaying Liu
- Abstract summary: We propose a learnable illumination enhancement model for high-level vision.
Inspired by real camera response functions, we assume that the illumination enhancement function should be a concave curve.
Our model architecture and training designs mutually benefit each other, forming a powerful unsupervised normal-to-low light adaptation framework.
- Score: 36.050270650417325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low light conditions not only degrade human visual experience, but also
reduce the performance of downstream machine analytics. Although many works
have been designed for low-light enhancement or domain adaptive machine
analytics, the former considers less on high-level vision, while the latter
neglects the potential of image-level signal adjustment. How to restore
underexposed images/videos from the perspective of machine vision has long been
overlooked. In this paper, we are the first to propose a learnable illumination
enhancement model for high-level vision. Inspired by real camera response
functions, we assume that the illumination enhancement function should be a
concave curve, and propose to satisfy this concavity through discrete integral.
With the intention of adapting illumination from the perspective of machine
vision without task-specific annotated data, we design an asymmetric
cross-domain self-supervised training strategy. Our model architecture and
training designs mutually benefit each other, forming a powerful unsupervised
normal-to-low light adaptation framework. Comprehensive experiments demonstrate
that our method surpasses existing low-light enhancement and adaptation methods
and shows superior generalization on various low-light vision tasks, including
classification, detection, action recognition, and optical flow estimation.
Project website: https://daooshee.github.io/SACC-Website/
Related papers
- ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [6.191556429706728]
Inadequate illumination can lead to significant information loss and poor image quality, impacting various applications such as surveillance.
Current enhancement techniques often use specific datasets to enhance low-light images, but still present challenges when adapting to diverse real-world conditions.
The Adaptive Light Enhancement Network (ALEN) is introduced, whose main approach is the use of a classification mechanism to determine whether local or global illumination enhancement is required.
arXiv Detail & Related papers (2024-07-29T05:19:23Z) - Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations [6.113035634680655]
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
arXiv Detail & Related papers (2024-07-17T11:51:52Z) - Zero-Reference Low-Light Enhancement via Physical Quadruple Priors [58.77377454210244]
We propose a new zero-reference low-light enhancement framework trainable solely with normal light images.
This framework is able to restore our illumination-invariant prior back to images, automatically achieving low-light enhancement.
arXiv Detail & Related papers (2024-03-19T17:36:28Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision.
Main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes.
We introduce the bilevel paradigm to model the above latent correspondence.
A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes.
arXiv Detail & Related papers (2023-06-02T08:16:21Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - Learning with Nested Scene Modeling and Cooperative Architecture Search
for Low-Light Vision [95.45256938467237]
Images captured from low-light scenes often suffer from severe degradations.
Deep learning methods have been proposed to enhance the visual quality of low-light images.
It is still challenging to extend these enhancement techniques to handle other Low-Light Vision applications.
arXiv Detail & Related papers (2021-12-09T06:08:31Z) - Improving Aerial Instance Segmentation in the Dark with Self-Supervised
Low Light Enhancement [6.500738558466833]
Low light conditions in aerial images adversely affect the performance of vision based applications.
We propose a new method that is capable of enhancing the low light image in a self-supervised fashion.
We also propose the generation of a new low light aerial dataset using GANs.
arXiv Detail & Related papers (2021-02-10T12:24:40Z) - Visual Perception Model for Rapid and Adaptive Low-light Image
Enhancement [19.955016389978926]
Low-light image enhancement is a promising solution to tackle the problem of insufficient sensitivity of human vision system (HVS) to perceive information in low light environments.
Previous Retinex-based works always accomplish enhancement task by estimating light intensity.
We propose a visual perception (VP) model to acquire a precise mathematical description of visual perception.
arXiv Detail & Related papers (2020-05-15T03:47:10Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.