Electro-optic sampling of the electric-field operator for ultrabroadband pulses of Gaussian quantum light
- URL: http://arxiv.org/abs/2506.01730v1
- Date: Mon, 02 Jun 2025 14:41:44 GMT
- Title: Electro-optic sampling of the electric-field operator for ultrabroadband pulses of Gaussian quantum light
- Authors: Geehyun Yang, Sandeep Sharma, Andrey S. Moskalenko,
- Abstract summary: In the mid-infrared spectral range, electro-optic sampling provides a means to characterize quantum fluctuations in the electric field of light pulses.<n>We present a protocol based on the two-port EOS technique that enables the complete characterization of multimode quantum light.<n>Our findings establish the two-port EOS technique as a versatile tool for characterizing ultrafast multimode quantum light.
- Score: 2.058673763571808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum light pulses (QLPs) can be described by spatio-temporal modes, each of which is associated with a quantum state. In the mid-infrared spectral range, electro-optic sampling (EOS) provides a means to characterize quantum fluctuations in the electric field of such light pulses. Here, we present a protocol based on the two-port EOS technique that enables the complete characterization of multimode Gaussian quantum light, demonstrating robustness to both the shot noise and cascading effects. We validate this approach theoretically by reconstructing a multimode squeezed state of light generated in a thin nonlinear crystal driven by a single-cycle pulse. Our findings establish the two-port EOS technique as a versatile tool for characterizing ultrafast multimode quantum light, thereby broadening the reach of quantum state tomography. Potential applications include the characterization of complex quantum structures, such as correlations and entanglement in light and matter. Further, extensions to study multimode non-Gaussian QLPs can be envisaged.
Related papers
- Highly squeezed nanophotonic quantum microcombs with broadband frequency tunability [32.121475563036455]
We present a nanophotonic squeezer that produces directly detected squeezing of 5.6 dB $pm$ 0.2 dB.<n>We introduce a seed-assisted detection technique into such nanophotonic squeezers that reveals a quantum frequency comb (QFC) of 16 qumodes.<n>Our results significantly advance both the generation and detection of nanophotonic squeezed light in a broadband and multimode platform.
arXiv Detail & Related papers (2025-05-06T17:59:23Z) - Multiparticle quantum plasmonics: fundamentals and applications [0.0]
This thesis explores how light interacts with collective charge oscillations at metal-dielectric interfaces, enabling strong confinement and enhanced quantum effects at the nanoscale.<n>By bridging theory and application, this thesis advances quantum plasmonics and highlights the potential of multiphoton methods in imaging, sensing, and information processing.
arXiv Detail & Related papers (2025-03-28T05:45:37Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - SUPER excitation of quantum emitters is a multi-photon process [0.0]
swing-up of quantum emitter population scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses.
Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
arXiv Detail & Related papers (2024-06-25T13:28:02Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.