論文の概要: Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
- arxiv url: http://arxiv.org/abs/2507.15597v1
- Date: Mon, 21 Jul 2025 13:19:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.407523
- Title: Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
- Title(参考訳): being-H0: 大規模人間の映像から学ぶ視覚言語行動
- Authors: Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng, Ye Wang, Haoqi Yuan, Jiazheng Liu, Chaoyi Xu, Qin Jin, Zongqing Lu,
- Abstract要約: 本稿では,大規模な人体ビデオで訓練された視覚・言語・行動モデルであるBeing-H0を紹介する。
提案手法は,人間のビデオからの大規模VLA事前学習,3次元推論のための物理空間アライメント,ロボット作業のためのポストトレーニング適応を組み合わせた,新しいトレーニングパラダイムである物理インストラクションチューニングに重点を置いている。
本研究では,手の動き生成と指示の結果としてのBeat-H0の卓越性を実証的に示すとともに,モデルやデータサイズにもよく対応している。
- 参考スコア(独自算出の注目度): 66.62109400603394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Being-H0, a dexterous Vision-Language-Action model (VLA) trained on large-scale human videos. Existing VLAs struggle with complex manipulation tasks requiring high dexterity and generalize poorly to novel scenarios and tasks, primarily due to their reliance on synthetic data with significant sim-to-real gaps or teleoperated demonstrations lacking scale and diversity. To address this data bottleneck, we propose leveraging human hands as a foundation manipulator, capitalizing on the rich dexterity and scalability present in web data. Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks. Additionally, we introduce a part-level motion tokenization method which achieves millimeter-level reconstruction accuracy to model precise hand trajectories for action learning. To support our proposed paradigm, we further develop a comprehensive data curation pipeline that integrates heterogeneous sources -- including motion capture, VR, and RGB-only videos -- into a large-scale dataset with millions of motion-based instructional instances. We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes. Importantly, we observe the expected gains of Being-H0 in real-world robotic manipulation as physical instruction tuning is applied. More details are available at https://beingbeyond.github.io/Being-H0.
- Abstract(参考訳): 本稿では,大規模な人間ビデオで訓練された視覚・言語・行動モデル(VLA)であるBeing-H0を紹介する。
既存のVLAは、複雑な操作タスクに苦労し、高い厳密さを必要とし、新しいシナリオやタスクに乏しく、主に、大きなsim-to-realギャップを持つ合成データに依存したり、スケールや多様性に欠ける遠隔操作デモに頼っている。
このデータボトルネックに対処するために、我々は、Webデータに存在するリッチなデクスタリティとスケーラビリティを活かして、ファンデーションマニピュレータとして人間の手を活用することを提案する。
提案手法は,人間のビデオからの大規模VLA事前学習,3次元推論のための物理空間アライメント,ロボット作業のためのポストトレーニング適応を組み合わせた,新しいトレーニングパラダイムである物理インストラクションチューニングに重点を置いている。
さらに,動作学習のための精密手指軌跡をモデル化するために,ミリレベルの再現精度を実現する部分レベルの動作トークン化手法を提案する。
提案したパラダイムをサポートするために,モーションキャプチャやVR,RGBのみの動画を含む異種ソースを,数百万のモーションベースのインストラクションインスタンスを備えた大規模データセットに統合する,包括的なデータキュレーションパイプラインをさらに開発する。
本研究では,手の動き生成と指示の結果としてのBeat-H0の卓越性を実証的に示すとともに,モデルやデータサイズにもよく対応している。
重要なことは,実世界のロボット操作において,身体的インストラクションのチューニングが適用されるにつれて,Beat-H0が期待される利益を観測することである。
詳細はhttps://beingbeyond.github.io/Being-H0.comで確認できる。
関連論文リスト
- AMPLIFY: Actionless Motion Priors for Robot Learning from Videos [29.799207502031496]
AMPLIFYは,大規模ビデオデータを活用する新しいフレームワークである。
我々は、豊富なアクションフリービデオでフォワードダイナミクスモデルを訓練し、限られたアクションラベル付き例で逆ダイナミクスモデルを訓練する。
下流の政策学習において、我々のダイナミクス予測は、低データのレシエーションにおいて1.2-2.2倍の改善を実現し、アクションフリーなヒューマンビデオから学ぶことで平均1.4倍の改善を実現し、非配布アクションデータからLIBEROタスクへの第1次一般化を可能にした。
論文 参考訳(メタデータ) (2025-06-17T05:31:42Z) - Modeling Fine-Grained Hand-Object Dynamics for Egocentric Video Representation Learning [71.02843679746563]
エゴセントリックなビデオ理解では、手や物体の動きと相互作用は自然によって重要な役割を果たす。
本研究では,細粒度ハンドオブジェクトのモデリングをビデオ表現学習プロセスに統合することを目的とする。
EgoVideoは,手の動き情報を微粒化するための,新しい軽量モーションアダプタを備えたモデルである。
論文 参考訳(メタデータ) (2025-03-02T18:49:48Z) - VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidManは、安定性を高め、データ利用効率を向上させるために、2段階のトレーニングメカニズムを使用する新しいフレームワークである。
我々のフレームワークは、CALVINベンチマークで最先端のベースラインモデルGR-1を上回り、11.7%の相対的な改善を実現し、OXEの小規模データセットで9%以上の精度向上を示す。
論文 参考訳(メタデータ) (2024-11-14T03:13:26Z) - EgoMimic: Scaling Imitation Learning via Egocentric Video [22.902881956495765]
EgoMimicは、人間の体表データを介して操作をスケールするフルスタックフレームワークである。
EgoMimic は,1) エルゴノミクス・プロジェクト・Aria メガネを用いたヒトの体型データをキャプチャするシステム,2) 人体データとの運動的ギャップを最小限に抑える低コストなバイマティックマニピュレータ,(4) 人体データとロボットデータとのコトレーニングを行う模倣学習アーキテクチャ,の2つによって実現している。
論文 参考訳(メタデータ) (2024-10-31T17:59:55Z) - Latent Action Pretraining from Videos [156.88613023078778]
一般行動モデル(LAPA)のための潜在行動事前訓練について紹介する。
LAPA(英: LAPA)は、VLA(Vision-Language-Action)モデルに接地型ロボットアクションラベルを含まない教師なしの訓練方法である。
本稿では,ロボットアクションラベルを持たないインターネット規模のビデオから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T16:28:09Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
我々は、ビデオフレーム内の任意の点の将来の軌跡を予測するために、ATM(Any-point Trajectory Modeling)を導入する。
ATMは、強力なビデオ事前トレーニングベースラインを平均80%上回っている。
本研究では,人間の動画やビデオからの操作スキルを,異なるロボット形態から効果的に伝達する学習方法を示す。
論文 参考訳(メタデータ) (2023-12-28T23:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。