Optimal Batch-Size Control for Low-Latency Federated Learning with Device Heterogeneity
- URL: http://arxiv.org/abs/2507.15601v1
- Date: Mon, 21 Jul 2025 13:24:38 GMT
- Title: Optimal Batch-Size Control for Low-Latency Federated Learning with Device Heterogeneity
- Authors: Huiling Yang, Zhanwei Wang, Kaibin Huang,
- Abstract summary: Federated learning (FL) has emerged as a popular approach for collaborative machine learning in sixth-generation (6G) networks.<n>The deployment of FL algorithms is expected to empower a wide range of Internet-of-Things (IoT) applications, e.g., autonomous driving, augmented reality, and healthcare.<n>We propose a novel C$2$-aware framework for optimal batch-size control that minimizes end-to-end (E2E) learning latency while ensuring convergence.
- Score: 24.47280082248569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a popular approach for collaborative machine learning in sixth-generation (6G) networks, primarily due to its privacy-preserving capabilities. The deployment of FL algorithms is expected to empower a wide range of Internet-of-Things (IoT) applications, e.g., autonomous driving, augmented reality, and healthcare. The mission-critical and time-sensitive nature of these applications necessitates the design of low-latency FL frameworks that guarantee high learning performance. In practice, achieving low-latency FL faces two challenges: the overhead of computing and transmitting high-dimensional model updates, and the heterogeneity in communication-and-computation (C$^2$) capabilities across devices. To address these challenges, we propose a novel C$^2$-aware framework for optimal batch-size control that minimizes end-to-end (E2E) learning latency while ensuring convergence. The framework is designed to balance a fundamental C$^2$ tradeoff as revealed through convergence analysis. Specifically, increasing batch sizes improves the accuracy of gradient estimation in FL and thus reduces the number of communication rounds required for convergence, but results in higher per-round latency, and vice versa. The associated problem of latency minimization is intractable; however, we solve it by designing an accurate and tractable surrogate for convergence speed, with parameters fitted to real data. This approach yields two batch-size control strategies tailored to scenarios with slow and fast fading, while also accommodating device heterogeneity. Extensive experiments using real datasets demonstrate that the proposed strategies outperform conventional batch-size adaptation schemes that do not consider the C$^2$ tradeoff or device heterogeneity.
Related papers
- Lightweight Federated Learning over Wireless Edge Networks [83.4818741890634]
Federated (FL) is an alternative at network edge, but an alternative in wireless networks.<n>We derive a closed-form expression FL convergence gap transmission power, model pruning error, and quantization.<n> LTFL outperforms state-the-art schemes in experiments on real-world datasets.
arXiv Detail & Related papers (2025-07-13T09:14:17Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Age-Based Device Selection and Transmit Power Optimization in Over-the-Air Federated Learning [44.04728314657621]
Over-the-air federated learning (FL) has attracted significant attention for its ability to enhance communication efficiency.<n>In particular, neglecting straggler devices in FL can lead to a decline in the fairness of model updates and amplify the global model's bias toward certain devices' data.<n>We propose a joint device selection and transmit power optimization framework that ensures the appropriate participation of straggler devices, maintains efficient training performance, and guarantees timely updates.
arXiv Detail & Related papers (2025-01-03T14:27:13Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
We propose a cost-adjustable FL framework, named AnycostFL, that enables diverse edge devices to efficiently perform local updates.
Experiment results indicate that, our learning framework can reduce up to 1.9 times of the training latency and energy consumption for realizing a reasonable global testing accuracy.
arXiv Detail & Related papers (2023-01-08T15:25:55Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Efficient Adaptive Federated Optimization of Federated Learning for IoT [0.0]
This paper proposes a novel efficient adaptive federated optimization (EAFO) algorithm to improve efficiency of Federated Learning (FL)
FL is a distributed privacy-preserving learning framework that enables IoT devices to train global model through sharing model parameters.
Experiment results show that the proposed EAFO can achieve higher accuracies faster.
arXiv Detail & Related papers (2022-06-23T01:49:12Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
Federated learning (FL) could result in task-oriented data traffic flows over wireless networks with limited radio resources.
We propose a novel over-the-air second-order federated optimization algorithm to simultaneously reduce the communication rounds and enable low-latency global model aggregation.
arXiv Detail & Related papers (2022-03-29T12:39:23Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.