Federated Learning via Intelligent Reflecting Surface
- URL: http://arxiv.org/abs/2011.05051v2
- Date: Thu, 12 Nov 2020 01:41:23 GMT
- Title: Federated Learning via Intelligent Reflecting Surface
- Authors: Zhibin Wang, Jiahang Qiu, Yong Zhou, Yuanming Shi, Liqun Fu, Wei Chen,
Khaled B. Lataief
- Abstract summary: Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
- Score: 30.935389187215474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over-the-air computation (AirComp) based federated learning (FL) is capable
of achieving fast model aggregation by exploiting the waveform superposition
property of multiple access channels. However, the model aggregation
performance is severely limited by the unfavorable wireless propagation
channels. In this paper, we propose to leverage intelligent reflecting surface
(IRS) to achieve fast yet reliable model aggregation for AirComp-based FL. To
optimize the learning performance, we formulate an optimization problem that
jointly optimizes the device selection, the aggregation beamformer at the base
station (BS), and the phase shifts at the IRS to maximize the number of devices
participating in the model aggregation of each communication round under
certain mean-squared-error (MSE) requirements. To tackle the formulated
highly-intractable problem, we propose a two-step optimization framework.
Specifically, we induce the sparsity of device selection in the first step,
followed by solving a series of MSE minimization problems to find the maximum
feasible device set in the second step. We then propose an alternating
optimization framework, supported by the difference-of-convex-functions
programming algorithm for low-rank optimization, to efficiently design the
aggregation beamformers at the BS and phase shifts at the IRS. Simulation
results will demonstrate that our proposed algorithm and the deployment of an
IRS can achieve a lower training loss and higher FL prediction accuracy than
the baseline algorithms.
Related papers
- Device Scheduling for Relay-assisted Over-the-Air Aggregation in
Federated Learning [9.735236606901038]
Federated learning (FL) leverages data distributed at the edge of the network to enable intelligent applications.
In this paper, we propose a relay-assisted FL framework, and investigate the device scheduling problem in relay-assisted FL systems.
arXiv Detail & Related papers (2023-12-15T03:04:39Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO
System [2.9081408997650375]
In this paper, we consider an intelligent reflecting surface (IRS)-aided cell-free massive multiple-input multiple-output system, where the beamforming at access points and the phase shifts at IRSs are jointly optimized to maximize energy efficiency (EE)
To solve EE problem, we propose an iterative optimization algorithm by using quadratic transform and Lagrangian dual transform to find the optimum beamforming and phase shifts.
We further propose a deep learning based approach for joint beamforming and phase shifts design. Specifically, a two-stage deep neural network is trained offline using the unsupervised learning manner, which is then deployed online for
arXiv Detail & Related papers (2022-12-24T14:58:15Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.