論文の概要: Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting
- arxiv url: http://arxiv.org/abs/2507.15614v1
- Date: Mon, 21 Jul 2025 13:38:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.416583
- Title: Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting
- Title(参考訳): HEC-RASの高速化 : 流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流路流
- Authors: Edward Holmberg, Pujan Pokhrel, Maximilian Zoch, Elias Ioup, Ken Pathak, Steven Sloan, Kendall Niles, Jay Ratcliff, Maik Flanagin, Christian Guetl, Julian Simeonov, Mahdi Abdelguerfi,
- Abstract要約: 本稿では,HEC-RASを解法としてではなく,データ生成エンジンとして扱う深層学習サロゲートを提案する。
ミシシッピ川流域の67か所で訓練され、サロゲートは1年間、目に見えないホールドアウトシミュレーションで評価された。
結果は、モデルが高い予測精度を達成し、中央値の絶対ステージ誤差は0.31フィートであることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-based solvers like HEC-RAS provide high-fidelity river forecasts but are too computationally intensive for on-the-fly decision-making during flood events. The central challenge is to accelerate these simulations without sacrificing accuracy. This paper introduces a deep learning surrogate that treats HEC-RAS not as a solver but as a data-generation engine. We propose a hybrid, auto-regressive architecture that combines a Gated Recurrent Unit (GRU) to capture short-term temporal dynamics with a Geometry-Aware Fourier Neural Operator (Geo-FNO) to model long-range spatial dependencies along a river reach. The model learns underlying physics implicitly from a minimal eight-channel feature vector encoding dynamic state, static geometry, and boundary forcings extracted directly from native HEC-RAS files. Trained on 67 reaches of the Mississippi River Basin, the surrogate was evaluated on a year-long, unseen hold-out simulation. Results show the model achieves a strong predictive accuracy, with a median absolute stage error of 0.31 feet. Critically, for a full 67-reach ensemble forecast, our surrogate reduces the required wall-clock time from 139 minutes to 40 minutes, a speedup of nearly 3.5 times over the traditional solver. The success of this data-driven approach demonstrates that robust feature engineering can produce a viable, high-speed replacement for conventional hydraulic models, improving the computational feasibility of large-scale ensemble flood forecasting.
- Abstract(参考訳): HEC-RASのような物理ベースの解法は、高忠実な川予測を提供するが、洪水時の意思決定には計算集約的すぎる。
中心的な課題は、これらのシミュレーションを精度を犠牲にすることなく加速させることである。
本稿では,HEC-RASを解法としてではなく,データ生成エンジンとして扱う深層学習サロゲートを提案する。
本稿では,GRU(Gated Recurrent Unit)とGeo-FNO(Geometry-Aware Fourier Neural Operator)を組み合わせたハイブリッド型自動回帰アーキテクチャを提案する。
このモデルは、HEC-RASファイルから直接抽出された動的状態、静的幾何、境界強制を符号化する最小8チャンネル特徴ベクトルから暗黙的に基礎物理学を学習する。
ミシシッピ川流域の67か所で訓練され、サロゲートは1年間、目に見えないホールドアウトシミュレーションで評価された。
結果は、モデルが高い予測精度を達成し、中央値の絶対ステージ誤差は0.31フィートであることを示している。
重要なことに、67回のアンサンブル予測では、我々のサロゲートは必要なウォールタイム時間を139分から40分に短縮し、従来の解法よりも3.5倍近いスピードアップを実現した。
このデータ駆動アプローチの成功は、ロバストな特徴工学が従来の油圧モデルに高速に置き換えることを可能にし、大規模なアンサンブル洪水予測の計算可能性を向上させることを証明している。
関連論文リスト
- Integrating Newton's Laws with deep learning for enhanced physics-informed compound flood modelling [0.8999666725996978]
沿岸部では、嵐の急増、高潮、豪雨、河川の流出など、複数のドライバーが一緒に、あるいは連続して起こる複合的な洪水に直面している。
従来の流体力学モデルは正確な物理に基づくシミュレーションを提供することができるが、リアルタイムアプリケーションやリスクアセスメントにはかなりの計算資源を必要とする。
本研究では, 複合洪水モデルにおいて, 完全な浅水力学を強制する物理インフォームドニューラルネットワークフレームワークであるALPINEを開発することにより, これらの課題に対処する。
論文 参考訳(メタデータ) (2025-07-20T16:06:10Z) - FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale [91.84761739154366]
FourCastNet 3は、確率的アンサンブル予測にスケーラブルで幾何学的な機械学習(ML)アプローチを実装することで、グローバルな気象モデリングを推進している。
FourCastNet 3は、従来のアンサンブルモデルを上回る予測精度を提供し、最良の拡散ベースのメソッドに匹敵する。
その計算効率、中距離確率的スキル、スペクトルの忠実度、およびサブシーズンタイムスケールでのロールアウト安定性は、大規模なアンサンブル予測を通じて気象予知と早期警報システムを改善するための強力な候補となる。
論文 参考訳(メタデータ) (2025-07-16T11:22:18Z) - Advanced long-term earth system forecasting by learning the small-scale nature [74.19833913539053]
私たちは、この根本的な課題に対処するために設計されたAIフレームワークであるTritonを紹介します。
数値モデルにおける小さなスケールを明示的に解決するグリッドの増加に触発されたTritonは、スペクトルバイアスを軽減するために、複数の解像度にわたって階層的なアーキテクチャ処理情報を使用する。
我々は,トライトンによる挑戦的な予測課題における優れた性能,安定な1年間の世界気温予測,120日間の熟練した黒潮渦予測,高忠実乱流シミュレーションを実証した。
論文 参考訳(メタデータ) (2025-05-26T02:49:00Z) - Physics-Informed Neural Network Surrogate Models for River Stage Prediction [0.0]
PINNは、単一河川での訓練において、HEC-RAS数値解をうまく近似することができる。
モデルの性能を精度と計算速度の観点から評価する。
論文 参考訳(メタデータ) (2025-03-21T04:48:22Z) - GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
海岸帯水層への海水侵入は地下水資源に重大な脅威をもたらす。
ディープラーニングに基づく新しいサロゲートフレームワークGeoFUSEを開発した。
ワシントン州のビーバークリーク潮流-河床平原系の2次元断面にGeoFUSEを適用した。
論文 参考訳(メタデータ) (2024-10-26T08:10:32Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
我々は,過去のセンサモニタリングデータに基づいて,橋脚周辺の深度変化を予測するために,ディープラーニングアルゴリズムの力を利用する。
本研究では,Long Short-Term Memory (LSTM) モデルとConvolutional Neural Network (CNN) モデルの性能について検討した。
論文 参考訳(メタデータ) (2024-04-25T12:04:36Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。