Extracting Visual Facts from Intermediate Layers for Mitigating Hallucinations in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2507.15652v1
- Date: Mon, 21 Jul 2025 14:15:34 GMT
- Title: Extracting Visual Facts from Intermediate Layers for Mitigating Hallucinations in Multimodal Large Language Models
- Authors: Haoran Zhou, Zihan Zhang, Hao Chen,
- Abstract summary: We introduce Decoding by Extracting Visual Facts (EVA), a training-free method that dynamically selects intermediate layers with the most significant visual factual information.<n>EVA significantly reduces hallucinations rates compared to baseline methods, underscoring its effectiveness in mitigating hallucinations.
- Score: 22.091545786344994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have made significant strides by combining visual recognition and language understanding to generate content that is both coherent and contextually accurate. However, MLLMs continue to struggle with object hallucinations, where models produce seemingly plausible but factually incorrect outputs, including objects that do not exist in the image. Recent work has revealed that the prior knowledge in MLLMs significantly suppresses visual information in deep layers, causing hallucinatory outputs. However, how these priors suppress visual information at the intermediate layer stage in MLLMs remains unclear. We observe that visual factual knowledge and the differences between intermediate-layer prior/original probability distributions show similar evolutionary trends in intermediate layers. Motivated by this, we introduce Decoding by Extracting Visual Facts (EVA), a simple, training-free method that dynamically selects intermediate layers with the most significant visual factual information. By contrasting the output distributions of the selected layer derived from the original input and pure-text input, EVA extracts visual factual knowledge and proportionally incorporates it into the final layer to correct the output logits. Importantly, EVA is model-agnostic, seamlessly integrates with various classic decoding strategies, and is applicable across different MLLMs. We validate EVA on widely-used benchmarks, and the results show that it significantly reduces hallucination rates compared to baseline methods, underscoring its effectiveness in mitigating hallucinations.
Related papers
- MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
arXiv Detail & Related papers (2025-05-30T05:54:36Z) - ClearSight: Visual Signal Enhancement for Object Hallucination Mitigation in Multimodal Large language Models [28.24397677839652]
Contrastive decoding strategies are widely used to mitigate object hallucinations in multimodal large language models (MLLMs)<n>We propose Visual Amplification Fusion (VAF), a plug-and-play technique that enhances attention to visual signals within the model's middle layers.<n>VAF significantly reduces hallucinations across various MLLMs without affecting inference speed, while maintaining coherence and accuracy in generated outputs.
arXiv Detail & Related papers (2025-03-17T12:30:40Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
Excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation.<n>We propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE)<n>DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer.
arXiv Detail & Related papers (2024-11-29T11:24:23Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal task reasoning.<n>They often generate responses that appear plausible yet do not accurately reflect the visual content, a phenomenon known as hallucination.<n>Recent approaches have introduced training-free methods to mitigate hallucinations by adjusting the decoding strategy during the inference stage.<n>We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfD
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.<n>We present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers.<n>Motivated by this, we propose a novel dynamic correction decoding method for MLLMs DeCo, which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - Lower Layers Matter: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused [27.894293943142447]
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks.<n>They occasionally generate inaccurate and counterfactual outputs, a phenomenon commonly referred to as "hallucinations"
arXiv Detail & Related papers (2024-08-16T14:23:59Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.