A Practical Investigation of Spatially-Controlled Image Generation with Transformers
- URL: http://arxiv.org/abs/2507.15724v1
- Date: Mon, 21 Jul 2025 15:33:49 GMT
- Title: A Practical Investigation of Spatially-Controlled Image Generation with Transformers
- Authors: Guoxuan Xia, Harleen Hanspal, Petru-Daniel Tudosiu, Shifeng Zhang, Sarah Parisot,
- Abstract summary: We aim to provide clear takeaways across generation paradigms for practitioners wishing to develop systems for spatially-controlled generation.<n>We perform controlled experiments on ImageNet across diffusion-based/flow-based and autoregressive (AR) models.
- Score: 16.682348277650817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling image generation models to be spatially controlled is an important area of research, empowering users to better generate images according to their own fine-grained specifications via e.g. edge maps, poses. Although this task has seen impressive improvements in recent times, a focus on rapidly producing stronger models has come at the cost of detailed and fair scientific comparison. Differing training data, model architectures and generation paradigms make it difficult to disentangle the factors contributing to performance. Meanwhile, the motivations and nuances of certain approaches become lost in the literature. In this work, we aim to provide clear takeaways across generation paradigms for practitioners wishing to develop transformer-based systems for spatially-controlled generation, clarifying the literature and addressing knowledge gaps. We perform controlled experiments on ImageNet across diffusion-based/flow-based and autoregressive (AR) models. First, we establish control token prefilling as a simple, general and performant baseline approach for transformers. We then investigate previously underexplored sampling time enhancements, showing that extending classifier-free guidance to control, as well as softmax truncation, have a strong impact on control-generation consistency. Finally, we re-clarify the motivation of adapter-based approaches, demonstrating that they mitigate "forgetting" and maintain generation quality when trained on limited downstream data, but underperform full training in terms of generation-control consistency. Code will be released upon publication.
Related papers
- IN45023 Neural Network Design Patterns in Computer Vision Seminar Report, Summer 2025 [0.0]
This report analyzes the evolution of key design patterns in computer vision by examining six influential papers.<n>We review ResNet, which introduced residual connections to overcome the vanishing gradient problem.<n>We examine the Vision Transformer (ViT), which established a new paradigm by applying the Transformer ar- chitecture to sequences of image patches.
arXiv Detail & Related papers (2025-07-31T09:08:11Z) - CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR) is a novel, plug-and-play framework that integrates conditional control into multi-scale latent variable modeling.
CAR progressively refines and captures control representations, which are injected into each autoregressive step of the pre-trained model to guide the generation process.
Our approach demonstrates excellent controllability across various types of conditions and delivers higher image quality compared to previous methods.
arXiv Detail & Related papers (2024-10-07T00:55:42Z) - ControlVAR: Exploring Controllable Visual Autoregressive Modeling [48.66209303617063]
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs)
Challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs.
This paper introduces Controlmore, a novel framework that explores pixel-level controls in visual autoregressive modeling for flexible and efficient conditional generation.
arXiv Detail & Related papers (2024-06-14T06:35:33Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Transformer-based Conditional Variational Autoencoder for Controllable
Story Generation [39.577220559911055]
We investigate large-scale latent variable models (LVMs) for neural story generation with objectives in two threads: generation effectiveness and controllability.
We advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers.
Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE)
arXiv Detail & Related papers (2021-01-04T08:31:11Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.