Label tree semantic losses for rich multi-class medical image segmentation
- URL: http://arxiv.org/abs/2507.15777v1
- Date: Mon, 21 Jul 2025 16:32:48 GMT
- Title: Label tree semantic losses for rich multi-class medical image segmentation
- Authors: Junwen Wang, Oscar MacCormac, William Rochford, Aaron Kujawa, Jonathan Shapey, Tom Vercauteren,
- Abstract summary: We propose two tree-based semantic loss functions which take advantage of a hierarchical organisation of labels.<n>Experiments are reported on two medical and surgical image segmentation tasks, namely head MRI for whole brain parcellation (WBP) with full supervision and neurosurgical hyperspectral imaging (HSI) for scene understanding with sparse annotations.
- Score: 3.1970844823805002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rich and accurate medical image segmentation is poised to underpin the next generation of AI-defined clinical practice by delineating critical anatomy for pre-operative planning, guiding real-time intra-operative navigation, and supporting precise post-operative assessment. However, commonly used learning methods for medical and surgical imaging segmentation tasks penalise all errors equivalently and thus fail to exploit any inter-class semantics in the labels space. This becomes particularly problematic as the cardinality and richness of labels increases to include subtly different classes. In this work, we propose two tree-based semantic loss functions which take advantage of a hierarchical organisation of the labels. We further incorporate our losses in a recently proposed approach for training with sparse, background-free annotations to extend the applicability of our proposed losses. Extensive experiments are reported on two medical and surgical image segmentation tasks, namely head MRI for whole brain parcellation (WBP) with full supervision and neurosurgical hyperspectral imaging (HSI) for scene understanding with sparse annotations. Results demonstrate that our proposed method reaches state-of-the-art performance in both cases.
Related papers
- Tree-based Semantic Losses: Application to Sparsely-supervised Large Multi-class Hyperspectral Segmentation [3.1970844823805002]
We introduce two tree-based semantic loss functions which take advantage of a hierarchical organisation of the labels.<n>Our proposed method reaches state-of-the-art performance on a sparsely annotated HSI dataset.
arXiv Detail & Related papers (2025-06-26T11:20:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation [8.307551496968156]
We present CUTS, an unsupervised deep learning framework for medical image segmentation.
For each image, it produces an embedding map via intra-image contrastive learning and local patch reconstruction.
CUTS yields a series of coarse-to-fine-grained segmentations that highlight features at various granularities.
arXiv Detail & Related papers (2022-09-23T01:09:06Z) - Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
Robust Loss [0.16490701092527607]
Training deep learning models commonly requires large datasets with expert-labeled annotations.
Image-based medical diagnosis tools using deep learning models trained with incorrect segmentation labels can lead to false diagnoses and treatment suggestions.
The aim of this paper was to develop and evaluate a method to generate probabilistic labels based on multi-rater annotations and anatomical knowledge of the lesion features in MRI.
arXiv Detail & Related papers (2022-09-16T21:07:59Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.