ItDPDM: Information-Theoretic Discrete Poisson Diffusion Model
- URL: http://arxiv.org/abs/2505.05082v3
- Date: Wed, 28 May 2025 00:53:21 GMT
- Title: ItDPDM: Information-Theoretic Discrete Poisson Diffusion Model
- Authors: Sagnik Bhattacharya, Abhiram Gorle, Ahsan Bilal, Connor Ding, Amit Kumar Singh Yadav, Tsachy Weissman,
- Abstract summary: We introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM), inspired by photon arrival process.<n>Central to our approach is an information-theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship with the true data likelihood.<n>ItDPDM attains superior likelihood estimates and competitive generation quality-demonstrating a proof of concept for distribution-robust discrete generative modeling.
- Score: 5.24776944932192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative modeling of non-negative, discrete data, such as symbolic music, remains challenging due to two persistent limitations in existing methods. Firstly, many approaches rely on modeling continuous embeddings, which is suboptimal for inherently discrete data distributions. Secondly, most models optimize variational bounds rather than exact data likelihood, resulting in inaccurate likelihood estimates and degraded sampling quality. While recent diffusion-based models have addressed these issues separately, we tackle them jointly. In this work, we introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM), inspired by photon arrival process, which combines exact likelihood estimation with fully discrete-state modeling. Central to our approach is an information-theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship with the true data likelihood. ItDPDM achieves improved likelihood and sampling performance over prior discrete and continuous diffusion models on a variety of synthetic discrete datasets. Furthermore, on real-world datasets such as symbolic music and images, ItDPDM attains superior likelihood estimates and competitive generation quality-demonstrating a proof of concept for distribution-robust discrete generative modeling.
Related papers
- Diffusion models for multivariate subsurface generation and efficient probabilistic inversion [0.0]
Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks.<n>We introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling.<n>Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function.
arXiv Detail & Related papers (2025-07-21T17:10:16Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.<n>We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Discrete vs. Continuous Trade-offs for Generative Models [0.0]
This work explores the theoretical and practical foundations of denoising diffusion probabilistic models (DDPMs)<n>DDPMs and score-based generative models, which leverage processes and Brownian motion to model complex data distributions.
arXiv Detail & Related papers (2024-12-26T08:14:27Z) - Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
"Mixture" models are capable of treating dimensional correlations while remaining scalable.<n>Loss functions enable the mixture models to distill such many-step conventional models into just a few steps by learning the dimensional correlations.<n>Results show the effectiveness of the proposed method in distilling pretrained discrete diffusion models across image and language domains.
arXiv Detail & Related papers (2024-10-11T10:53:03Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Bayesian Flow Networks [4.197165999892042]
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference.<n>Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models.<n>BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
arXiv Detail & Related papers (2023-08-14T09:56:35Z) - On Error Propagation of Diffusion Models [77.91480554418048]
We develop a theoretical framework to mathematically formulate error propagation in the architecture of DMs.
We apply the cumulative error as a regularization term to reduce error propagation.
Our proposed regularization reduces error propagation, significantly improves vanilla DMs, and outperforms previous baselines.
arXiv Detail & Related papers (2023-08-09T15:31:17Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.