論文の概要: Integrating Reason-Based Moral Decision-Making in the Reinforcement Learning Architecture
- arxiv url: http://arxiv.org/abs/2507.15895v1
- Date: Sun, 20 Jul 2025 16:46:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.7964
- Title: Integrating Reason-Based Moral Decision-Making in the Reinforcement Learning Architecture
- Title(参考訳): 強化学習アーキテクチャにおける推論に基づくモーラル意思決定の統合
- Authors: Lisa Dargasz,
- Abstract要約: 本研究では,理性に基づく人工道徳エージェント(RBAMA)の開発について検討する。
RBAMAは、音響規範的推論に基づく道徳的意思決定を可能にするため、強化学習アーキテクチャの拡張の上に構築されている。
本研究では, RBAMA の最初の実装について述べるとともに, RBAMA の初期実験における可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning is a machine learning methodology that has demonstrated strong performance across a variety of tasks. In particular, it plays a central role in the development of artificial autonomous agents. As these agents become increasingly capable, market readiness is rapidly approaching, which means those agents, for example taking the form of humanoid robots or autonomous cars, are poised to transition from laboratory prototypes to autonomous operation in real-world environments. This transition raises concerns leading to specific requirements for these systems - among them, the requirement that they are designed to behave ethically. Crucially, research directed toward building agents that fulfill the requirement to behave ethically - referred to as artificial moral agents(AMAs) - has to address a range of challenges at the intersection of computer science and philosophy. This study explores the development of reason-based artificial moral agents (RBAMAs). RBAMAs are build on an extension of the reinforcement learning architecture to enable moral decision-making based on sound normative reasoning, which is achieved by equipping the agent with the capacity to learn a reason-theory - a theory which enables it to process morally relevant propositions to derive moral obligations - through case-based feedback. They are designed such that they adapt their behavior to ensure conformance to these obligations while they pursue their designated tasks. These features contribute to the moral justifiability of the their actions, their moral robustness, and their moral trustworthiness, which proposes the extended architecture as a concrete and deployable framework for the development of AMAs that fulfills key ethical desiderata. This study presents a first implementation of an RBAMA and demonstrates the potential of RBAMAs in initial experiments.
- Abstract(参考訳): 強化学習(Reinforcement Learning)は、さまざまなタスクで強力なパフォーマンスを示す機械学習方法論である。
特に、人工自律エージェントの開発において中心的な役割を果たす。
これらのエージェントがますます有能になるにつれて、市場の準備が急速に進んでいる。つまり、例えばヒューマノイドロボットや自動運転車のようなエージェントは、実験室のプロトタイプから現実の環境での自律的な操作へと移行する可能性がある。
この移行は、これらのシステムに特有の要件をもたらす懸念を提起します。
重要なことは、倫理的に行動する要件を満たすエージェントを構築するための研究 - 人工道徳エージェント (AMA) と呼ばれる - は、コンピュータ科学と哲学の交差における様々な課題に対処する必要がある。
本研究では,理性に基づく人工道徳エージェント(RBAMA)の開発について検討する。
RBAMAは、音響規範的推論に基づく道徳的意思決定を可能にするため、強化学習アーキテクチャの拡張の上に構築されている。
彼らは、指定されたタスクを追求している間に、これらの義務に適合するように行動に適応するように設計されている。
これらの特徴は、彼らの行動の道徳的正当性、道徳的堅牢性、そして彼らの道徳的信頼感に寄与し、重要な倫理的デシダータを満たすAMAの開発のための具体的で展開可能なフレームワークとして拡張されたアーキテクチャを提案する。
本研究では, RBAMA の最初の実装について述べるとともに, RBAMA の初期実験における可能性を示す。
関連論文リスト
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的である。
LLMはますますオープンでインタラクティブな環境にデプロイされているため、この静的な性質は重要なボトルネックとなっている。
この調査は、自己進化エージェントの体系的で包括的なレビューを初めて提供する。
論文 参考訳(メタデータ) (2025-07-28T17:59:05Z) - Toward a Theory of Agents as Tool-Use Decision-Makers [89.26889709510242]
真の自律性は、エージェントが、彼らが知っていること、必要なこと、そしてその知識を効率的に獲得する方法を統治する、一貫性のある疫学の枠組みに根ざす必要がある、と我々は主張する。
本研究では,内的推論と外的行動を等価な疫学ツールとして扱う統一理論を提案し,エージェントが内観と相互作用を体系的に調整することを可能にする。
この視点は、エージェントの設計を単なるアクションエグゼクタから知識駆動インテリジェンスシステムにシフトさせ、適応的で効率的でゴール指向の行動が可能な基礎エージェントを構築するための原則化された道筋を提供する。
論文 参考訳(メタデータ) (2025-06-01T07:52:16Z) - When Ethics and Payoffs Diverge: LLM Agents in Morally Charged Social Dilemmas [68.79830818369683]
大規模言語モデル(LLM)は、人間や他のエージェントとの意思決定を含む複雑なエージェントの役割での使用を可能にしている。
大規模言語モデル(LLM)の最近の進歩は、人間や他のエージェントとの意思決定を含む複雑なエージェントの役割において、それらの使用を可能にしている。
道徳的命令が報酬やインセンティブと直接衝突するときの行動についての理解は限られている。
本稿では,社会ジレンマシミュレーション(MoralSim)におけるモラル行動について紹介し,LLMが囚人のジレンマゲームや公共グッズゲームにおいて道徳的に課金された文脈でどのように振る舞うかを評価する。
論文 参考訳(メタデータ) (2025-05-25T16:19:24Z) - Artificial Intelligence (AI) and the Relationship between Agency, Autonomy, and Moral Patiency [0.0]
私たちは、現在のAIシステムは高度に洗練されていますが、真のエージェンシーと自律性は欠如しています。
我々は、意識のない限られた形態の人工道徳機関を達成できる未来のシステムの可能性を排除することはできない。
論文 参考訳(メタデータ) (2025-04-11T03:48:40Z) - Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits [1.7205106391379026]
AIシステムは自律性と適応性で機能するので、技術的社会システムにおける伝統的な道徳的責任の境界が課題となっている。
本稿では,知的自律エージェントへの責任委譲に関する議論の進展と,そのような実践の倫理的意味について考察する。
論文 参考訳(メタデータ) (2024-11-06T18:40:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto [3.7414804164475983]
次世代人工知能(AI)システムの安全性確保への関心が高まっているため、自律エージェントに道徳を埋め込む新しいアプローチが求められている。
連続体としてモデル化された機械に道徳を導入する問題に対する既存のアプローチの体系化を提供する。
我々は、適応可能で堅牢だが制御可能で解釈可能なエージェントシステムを構築するために、よりハイブリッドなソリューションが必要であると論じている。
論文 参考訳(メタデータ) (2023-12-04T11:46:34Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
倫理的AIシステムの開発には倫理的判断が不可欠である。
一般的なアプローチは主にボトムアップ方式で実装されており、モラルに関するクラウドソースの意見に基づいて、大量の注釈付きデータを使用してモデルをトレーニングする。
本研究は、学際的な研究から確立された道徳理論を用いて道徳的推論を行うために、言語モデル(LM)を操る柔軟なトップダウンフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T15:57:32Z) - Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning [4.2050490361120465]
ボトムアップ学習アプローチは、AIエージェントの倫理的行動の研究と開発にもっと適しているかもしれない。
本稿では,道徳理論に基づく報酬を内在的に動機づけたRLエージェントによる選択の体系的分析を行う。
我々は、異なる種類の道徳が協力、欠陥、搾取の出現に与える影響を分析する。
論文 参考訳(メタデータ) (2023-01-20T09:36:42Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - Reinforcement Learning Under Moral Uncertainty [13.761051314923634]
機械学習の野心的な目標は、倫理的に振る舞うエージェントを作ることだ。
倫理的エージェントは、特定の道徳理論の下で正しい行動に報いることによって訓練することができるが、道徳性の本質について広く意見の相違がある。
本稿では、競合するデシダラタの異なる点を実現するための2つのトレーニング手法を提案し、モラルの不確実性の下で行動するための単純な環境におけるエージェントを訓練する。
論文 参考訳(メタデータ) (2020-06-08T16:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。