Advancing Responsible Innovation in Agentic AI: A study of Ethical Frameworks for Household Automation
- URL: http://arxiv.org/abs/2507.15901v1
- Date: Mon, 21 Jul 2025 06:10:02 GMT
- Title: Advancing Responsible Innovation in Agentic AI: A study of Ethical Frameworks for Household Automation
- Authors: Joydeep Chandra, Satyam Kumar Navneet,
- Abstract summary: This article analyzes agentic AI and its applications, focusing on its move from reactive to proactive autonomy, privacy, fairness and user control.<n>Vulnerable user groups such as elderly individuals, children, and neurodivergent who face higher risks of surveillance, bias, and privacy risks were studied.<n>Design imperatives are highlighted such as tailored explainability, granular consent mechanisms, and robust override controls.
- Score: 1.6766200616088744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The implementation of Artificial Intelligence (AI) in household environments, especially in the form of proactive autonomous agents, brings about possibilities of comfort and attention as well as it comes with intra or extramural ethical challenges. This article analyzes agentic AI and its applications, focusing on its move from reactive to proactive autonomy, privacy, fairness and user control. We review responsible innovation frameworks, human-centered design principles, and governance practices to distill practical guidance for ethical smart home systems. Vulnerable user groups such as elderly individuals, children, and neurodivergent who face higher risks of surveillance, bias, and privacy risks were studied in detail in context of Agentic AI. Design imperatives are highlighted such as tailored explainability, granular consent mechanisms, and robust override controls, supported by participatory and inclusive methodologies. It was also explored how data-driven insights, including social media analysis via Natural Language Processing(NLP), can inform specific user needs and ethical concerns. This survey aims to provide both a conceptual foundation and suggestions for developing transparent, inclusive, and trustworthy agentic AI in household automation.
Related papers
- Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Integrating Generative AI in Cybersecurity Education: Case Study Insights on Pedagogical Strategies, Critical Thinking, and Responsible AI Use [0.0]
This study presents a structured framework for integrating GenAI tools into cybersecurity education.<n>The implementation strategy followed a two-stage approach, embedding GenAI within tutorial exercises and assessment tasks.<n>Findings indicate that AI-assisted learning significantly enhanced students' ability to evaluate security policies, refine risk assessments, and bridge theoretical knowledge with practical application.
arXiv Detail & Related papers (2025-02-21T10:14:07Z) - Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives [0.0]
This study explores stakeholder perspectives on privacy in AI systems, focusing on educators, parents, and AI professionals.<n>Using qualitative analysis of survey responses from 227 participants, the research identifies key privacy risks, including data breaches, ethical misuse, and excessive data collection.<n>The findings provide actionable insights into balancing the benefits of AI with robust privacy protections.
arXiv Detail & Related papers (2025-01-23T02:06:25Z) - Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
Authors argue that ethical concerns about AI deployment vary significantly based on implementation context and specific use cases.<n>They propose a dimensional risk assessment approach that considers factors like data sensitivity, professional oversight requirements, and potential impact on client wellbeing.
arXiv Detail & Related papers (2025-01-20T19:38:21Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.