Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives
- URL: http://arxiv.org/abs/2501.13320v1
- Date: Thu, 23 Jan 2025 02:06:25 GMT
- Title: Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives
- Authors: Ajay Kumar Shrestha, Sandhya Joshi,
- Abstract summary: This study explores stakeholder perspectives on privacy in AI systems, focusing on educators, parents, and AI professionals.
Using qualitative analysis of survey responses from 227 participants, the research identifies key privacy risks, including data breaches, ethical misuse, and excessive data collection.
The findings provide actionable insights into balancing the benefits of AI with robust privacy protections.
- Score: 0.0
- License:
- Abstract: As Artificial Intelligence (AI) systems become increasingly integrated into various aspects of daily life, concerns about privacy and ethical accountability are gaining prominence. This study explores stakeholder perspectives on privacy in AI systems, focusing on educators, parents, and AI professionals. Using qualitative analysis of survey responses from 227 participants, the research identifies key privacy risks, including data breaches, ethical misuse, and excessive data collection, alongside perceived benefits such as personalized services, enhanced efficiency, and educational advancements. Stakeholders emphasized the need for transparency, privacy-by-design, user empowerment, and ethical oversight to address privacy concerns effectively. The findings provide actionable insights into balancing the benefits of AI with robust privacy protections, catering to the diverse needs of stakeholders. Recommendations include implementing selective data use, fostering transparency, promoting user autonomy, and integrating ethical principles into AI development. This study contributes to the ongoing discourse on ethical AI, offering guidance for designing privacy-centric systems that align with societal values and build trust among users. By addressing privacy challenges, this research underscores the importance of developing AI technologies that are not only innovative but also ethically sound and responsive to the concerns of all stakeholders.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Investigation of the Privacy Concerns in AI Systems for Young Digital Citizens: A Comparative Stakeholder Analysis [0.0]
The study underscores the need for user-centric privacy controls, tailored transparency strategies, and targeted educational initiatives.
incorporating diverse stakeholder perspectives offers actionable insights into ethical AI design and governance.
arXiv Detail & Related papers (2025-01-23T02:07:45Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Ethical AI in Retail: Consumer Privacy and Fairness [0.0]
The adoption of artificial intelligence (AI) in retail has significantly transformed the industry, enabling more personalized services and efficient operations.
However, the rapid implementation of AI technologies raises ethical concerns, particularly regarding consumer privacy and fairness.
This study aims to analyze the ethical challenges of AI applications in retail, explore ways retailers can implement AI technologies ethically while remaining competitive, and provide recommendations on ethical AI practices.
arXiv Detail & Related papers (2024-10-20T12:00:14Z) - Enhancing transparency in AI-powered customer engagement [0.0]
This paper addresses the critical challenge of building consumer trust in AI-powered customer engagement.
Despite the potential of AI to revolutionise business operations, widespread concerns about misinformation and the opacity of AI decision-making processes hinder trust.
By adopting a holistic approach to transparency and explainability, businesses can cultivate trust in AI technologies.
arXiv Detail & Related papers (2024-09-13T20:26:11Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
Powerful AI models have led to impressive leaps in performance across a wide range of tasks.
Privacy concerns have led to a wealth of literature covering various privacy risks and vulnerabilities of AI models.
We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS.
arXiv Detail & Related papers (2024-07-02T07:49:48Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Ethics and Responsible AI Deployment [1.3597551064547502]
Article explores the need for ethical AI systems that safeguard individual privacy while complying with ethical standards.
Research examines innovative algorithmic techniques such as differential privacy, homomorphic encryption, federated learning, international regulatory frameworks, and ethical guidelines.
arXiv Detail & Related papers (2023-11-12T13:32:46Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.