論文の概要: Does More Inference-Time Compute Really Help Robustness?
- arxiv url: http://arxiv.org/abs/2507.15974v1
- Date: Mon, 21 Jul 2025 18:08:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.833677
- Title: Does More Inference-Time Compute Really Help Robustness?
- Title(参考訳): 推論時間コンピューティングはロバスト性に本当に役立つのか?
- Authors: Tong Wu, Chong Xiang, Jiachen T. Wang, Weichen Yu, Chawin Sitawarin, Vikash Sehwag, Prateek Mittal,
- Abstract要約: 小規模なオープンソースモデルは、推論時間スケーリングの恩恵を受けることができることを示す。
我々は、逆スケーリング法として、直感的に動機付けられ、実証的に検証された重要なセキュリティリスクを特定します。
私たちは、セキュリティに敏感で現実世界のアプリケーションに推論タイムのスケーリングを適用する前に、実践者にこれらの微妙なトレードオフを慎重に検討するよう促します。
- 参考スコア(独自算出の注目度): 50.47666612618054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Zaremba et al. demonstrated that increasing inference-time computation improves robustness in large proprietary reasoning LLMs. In this paper, we first show that smaller-scale, open-source models (e.g., DeepSeek R1, Qwen3, Phi-reasoning) can also benefit from inference-time scaling using a simple budget forcing strategy. More importantly, we reveal and critically examine an implicit assumption in prior work: intermediate reasoning steps are hidden from adversaries. By relaxing this assumption, we identify an important security risk, intuitively motivated and empirically verified as an inverse scaling law: if intermediate reasoning steps become explicitly accessible, increased inference-time computation consistently reduces model robustness. Finally, we discuss practical scenarios where models with hidden reasoning chains are still vulnerable to attacks, such as models with tool-integrated reasoning and advanced reasoning extraction attacks. Our findings collectively demonstrate that the robustness benefits of inference-time scaling depend heavily on the adversarial setting and deployment context. We urge practitioners to carefully weigh these subtle trade-offs before applying inference-time scaling in security-sensitive, real-world applications.
- Abstract(参考訳): Zarembaらは最近、推論時間の増大がLLMの大規模プロプライエタリな推論におけるロバスト性を改善することを示した。
本稿では,より小規模なオープンソースモデル(例えば,DeepSeek R1,Qwen3,Phi-reasoning)が,シンプルな予算強制戦略による推論時間スケーリングの恩恵を受けることを示す。
さらに重要なことは、先行研究における暗黙の仮定(中間推論ステップは敵から隠蔽される)を明らかにし、批判的に検証することである。
この仮定を緩和することにより、逆スケーリング法則として直感的に動機付けられ、実証的に検証された重要なセキュリティリスクを特定できる。
最後に,隠れ推論連鎖を持つモデルが,ツール統合推論モデルや高度な推論抽出攻撃のような攻撃に対してまだ脆弱であるような,現実的なシナリオについて議論する。
その結果, 予測時間スケーリングのロバストさの利点は, 対向的な設定や展開状況に大きく依存していることが示唆された。
私たちは、セキュリティに敏感で現実世界のアプリケーションに推論タイムのスケーリングを適用する前に、実践者にこれらの微妙なトレードオフを慎重に検討するよう促します。
関連論文リスト
- ReasoningGuard: Safeguarding Large Reasoning Models with Inference-time Safety Aha Moments [18.198349215500183]
ReasoningGuardは、タイムリーな安全アハモーメントを注入し、無害な理由づけプロセスを実行します。
弊社のアプローチは、既存の7つの安全ガードを上回り、最先端の安全防衛を達成している。
論文 参考訳(メタデータ) (2025-08-06T08:35:10Z) - Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models [0.0]
RLM(Reasoning Language Models)は、複雑な多段階推論タスクを実行する能力によって注目を集めている。
これらの能力は信頼性の向上を約束するが、社会的バイアスに対する堅牢性への影響はまだ不明だ。
我々は, CLEAR-Bias ベンチマークを用いて, RLM のバイアス誘発に対する対角的ロバスト性について検討する。
論文 参考訳(メタデータ) (2025-07-03T17:01:53Z) - Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
大規模推論モデル(LRM)において,効率的な推論手法が行動の不整合をもたらすかどうかを検討する。
$ICBENCH$は、3次元にわたるLRMの不整合を測定するために設計されたベンチマークである。
より大きなモデルは一般的に小さなモデルよりも一貫性が高いが、すべてのモデルが広く「計画的」な振る舞いを示す。
論文 参考訳(メタデータ) (2025-06-24T10:25:28Z) - Excessive Reasoning Attack on Reasoning LLMs [26.52688123765127]
本研究では,過度な推論行動を活用するために,敵対的入力を作成できるという,新たな脅威を明らかにする。
提案手法は,実用性能に匹敵する推理長を3倍から9倍に向上することを示した。
提案手法は,o3-mini,o1-mini,DeepSeek-R1,QWQモデルで計算オーバーヘッドを誘導するトランスファービリティを示す。
論文 参考訳(メタデータ) (2025-06-17T10:16:52Z) - On Reasoning Strength Planning in Large Reasoning Models [50.61816666920207]
我々は, LRM が, 世代前においても, アクティベーションにおける推論強度を事前に計画している証拠を見出した。
次に、LEMがモデルのアクティベーションに埋め込まれた方向ベクトルによって、この推論強度を符号化していることを明らかにする。
我々の研究は、LEMにおける推論の内部メカニズムに関する新たな洞察を提供し、それらの推論行動を制御するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2025-06-10T02:55:13Z) - Saffron-1: Safety Inference Scaling [69.61130284742353]
SAFFRONは、安全保証のために明示的に調整された、新しい推論スケーリングパラダイムである。
我々のアプローチの中心は、要求される報酬モデルの評価を著しく削減する乗算報酬モデル(MRM)の導入である。
トレーニング済みの多機能報酬モデル(Saffron-1)とそれに伴うトークンレベルの安全報酬データセット(Safety4M)を公開します。
論文 参考訳(メタデータ) (2025-06-06T18:05:45Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning [75.1101108949743]
大規模推論モデル(LRM)は、Chain-of-Thought (CoT)プロンプトを介して複雑な推論タスクを強く行う。
LRMは冗長なコンテンツによる冗長なアウトプット、計算オーバーヘッドの増加、ユーザエクスペリエンスの低下に悩まされることが多い。
本稿では,推論中のモデルの信頼性を高めることによって推論チェーンを簡素化するフレームワークであるConCISEを提案する。
論文 参考訳(メタデータ) (2025-05-08T01:40:40Z) - Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs [83.11815479874447]
本研究では,人間の認知における認知的分解と偏見に触発された新しいジェイルブレイク攻撃フレームワークを提案する。
我々は、悪意のあるプロンプトの複雑さと関連バイアスを減らし、認知的分解を用いて、プロンプトを再編成する。
また、従来の二分的成功または失敗のパラダイムを超越したランキングベースの有害度評価指標も導入する。
論文 参考訳(メタデータ) (2025-05-03T05:28:11Z) - Trading Inference-Time Compute for Adversarial Robustness [27.514612815314084]
我々は、推論モデルにおける推論時間計算の増加が敵攻撃に対する堅牢性に与える影響について実験を行った。
さまざまな攻撃において、推論時間の増大はロバスト性の向上につながることが分かっています。
論文 参考訳(メタデータ) (2025-01-31T01:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。