論文の概要: Improved Semantic Segmentation from Ultra-Low-Resolution RGB Images Applied to Privacy-Preserving Object-Goal Navigation
- arxiv url: http://arxiv.org/abs/2507.16034v1
- Date: Mon, 21 Jul 2025 19:53:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.869354
- Title: Improved Semantic Segmentation from Ultra-Low-Resolution RGB Images Applied to Privacy-Preserving Object-Goal Navigation
- Title(参考訳): プライバシ保存オブジェクトゴールナビゲーションに応用した超低解像度RGB画像からのセマンティックセグメンテーションの改善
- Authors: Xuying Huang, Sicong Pan, Olga Zatsarynna, Juergen Gall, Maren Bennewitz,
- Abstract要約: 視覚的プライバシを維持するために,セマンティックベースのロボットナビゲーションを超低解像度環境で研究する。
このようなシナリオにおける重要な課題は、超低解像度のRGB画像からセマンティックセグメンテーションを復元することである。
本稿では,アグリメティブ特徴抽出器とセグメンテーション対応識別器を統合した,新しい完全共同学習手法を提案する。
- 参考スコア(独自算出の注目度): 18.663618014938912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User privacy in mobile robotics has become a critical concern. Existing methods typically prioritize either the performance of downstream robotic tasks or privacy protection, with the latter often constraining the effectiveness of task execution. To jointly address both objectives, we study semantic-based robot navigation in an ultra-low-resolution setting to preserve visual privacy. A key challenge in such scenarios is recovering semantic segmentation from ultra-low-resolution RGB images. In this work, we introduce a novel fully joint-learning method that integrates an agglomerative feature extractor and a segmentation-aware discriminator to solve ultra-low-resolution semantic segmentation, thereby enabling privacy-preserving, semantic object-goal navigation. Our method outperforms different baselines on ultra-low-resolution semantic segmentation and our improved segmentation results increase the success rate of the semantic object-goal navigation in a real-world privacy-constrained scenario.
- Abstract(参考訳): モバイルロボティクスにおけるユーザーのプライバシーは重要な問題となっている。
既存の手法では、ダウンストリームロボットタスクのパフォーマンスやプライバシ保護が優先され、後者ではタスク実行の有効性が制限されることが多い。
両目的を共同で解決するために,視覚的プライバシを維持するために,超低解像度環境でセマンティックベースのロボットナビゲーションを研究する。
このようなシナリオにおける重要な課題は、超低解像度のRGB画像からセマンティックセグメンテーションを復元することである。
そこで本研究では,超低解像度セマンティックセマンティックセマンティックセマンティックを解くために,アグロメリック特徴抽出器とセマンティック認識識別器を統合した完全共同学習手法を提案する。
提案手法は,超低解像度なセマンティックセマンティックセマンティックセマンティクスにおいて,異なるベースラインを上回り,改良されたセマンティヴセマンティクスにより,現実のプライバシ制約シナリオにおけるセマンティヴゴールナビゲーションの成功率が向上する。
関連論文リスト
- Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond [52.486290612938895]
本稿では,Segment Anything Model (SAM) のセグメンテーションモデルからのセグメンテーション知識を利用して,融合結果の質を向上し,下流タスク適応性を実現する手法を提案する。
具体的には、SAMから高レベルなセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・アテンション(SPA)モジュールを抽出し、永続リポジトリを介してソース情報を効率的に保持する。
本手法は,実運用効率を維持しつつ,高品質な視覚結果と下流タスク適応性のバランスを実現する。
論文 参考訳(メタデータ) (2025-03-03T06:16:31Z) - Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
我々は、比較的未探索なタスク設定、長い尾のセマンティックセマンティックセグメンテーション(LTSS)に焦点を当てる。
本稿では,セマンティックセグメンテーション手法と長鎖解の性能を示すために,二値評価システムを提案し,LTSSベンチマークを構築した。
また,1対1のマッチングによって過剰な圧縮問題を解決する周波数ベースのマーカであるLTSSを改善するトランスフォーマーベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:57:56Z) - EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation [5.476136494434766]
意味的類似性行列から派生した固有ベイズを通して意味的および構造的手がかりを提供する手法であるEiCueを紹介する。
オブジェクトレベルの表現を画像内および画像間の整合性で学習する。
COCO-Stuff、Cityscapes、Potsdam-3データセットの実験では、最先端のUSSの結果が示されている。
論文 参考訳(メタデータ) (2024-03-03T11:24:16Z) - Memory-Constrained Semantic Segmentation for Ultra-High Resolution UAV
Imagery [35.96063342025938]
本稿では,超高解像度UAV画像の高効率・高効率セグメンテーションを実現するための複雑な課題について検討する。
本稿では、ローカルパッチ以外のコンテキストにアクセスすることなく、ローカル推論のためのGPUメモリ効率が高く効果的なフレームワークを提案する。
基礎となる高解像度情報の潜在的な意味バイアスを補正するために,効率的なメモリベースインタラクション方式を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:44:59Z) - Egocentric RGB+Depth Action Recognition in Industry-Like Settings [50.38638300332429]
本研究は,産業的な環境下での自我中心のRGBとDepthモダリティからの行動の認識に焦点を当てる。
我々のフレームワークは、RGBとDepthの両方のモダリティを効果的に符号化する3DビデオSWIN変換器に基づいている。
また,ICIAP 2023におけるマルチモーダル動作認識チャレンジにおいて,本手法が第1位を確保した。
論文 参考訳(メタデータ) (2023-09-25T08:56:22Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning
to Segment Driveability in Egocentric Images [25.350677396144075]
この研究は、屋外ロボットナビゲーションのシーン理解に取り組み、オンボードカメラで撮影された画像にのみ依存する。
我々は、ロボットがどのようにナビゲートするかという点で、自我中心の画像を直接分類し、学習問題を自律的なナビゲーションタスクに合わせる。
任意のシーンに適用可能な3つの駆動性レベルからなる汎用的かつスケーラブルなアベイランスベースの定義を提案する。
論文 参考訳(メタデータ) (2021-09-15T12:25:56Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
本稿では,意味的に有意な領域を粗い位置で特定する,軽量で教師付きの深層ネットワークを提案する。
次に,これらセマンティック・サリエント領域の深層モデルを画素ワイド・サリエンシ改善として融合する。
提案手法は単純だが有効であり,本手法は主眼をオブジェクトレベルのセマンティック・リグレード問題とみなすための最初の試みである。
論文 参考訳(メタデータ) (2020-08-10T07:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。