Multi-Agent Reinforcement Learning for Sample-Efficient Deep Neural Network Mapping
- URL: http://arxiv.org/abs/2507.16249v1
- Date: Tue, 22 Jul 2025 05:51:07 GMT
- Title: Multi-Agent Reinforcement Learning for Sample-Efficient Deep Neural Network Mapping
- Authors: Srivatsan Krishnan, Jason Jabbour, Dan Zhang, Natasha Jaques, Aleksandra Faust, Shayegan Omidshafiei, Vijay Janapa Reddi,
- Abstract summary: We present a decentralized multi-agent reinforcement learning (MARL) framework designed to overcome the challenge of sample inefficiency.<n>We introduce an agent clustering algorithm that assigns similar mapping parameters to the same agents based on correlation analysis.<n> Experimental results show our MARL approach improves sample efficiency by 30-300x over standard single-agent RL.
- Score: 54.65536245955678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping deep neural networks (DNNs) to hardware is critical for optimizing latency, energy consumption, and resource utilization, making it a cornerstone of high-performance accelerator design. Due to the vast and complex mapping space, reinforcement learning (RL) has emerged as a promising approach-but its effectiveness is often limited by sample inefficiency. We present a decentralized multi-agent reinforcement learning (MARL) framework designed to overcome this challenge. By distributing the search across multiple agents, our framework accelerates exploration. To avoid inefficiencies from training multiple agents in parallel, we introduce an agent clustering algorithm that assigns similar mapping parameters to the same agents based on correlation analysis. This enables a decentralized, parallelized learning process that significantly improves sample efficiency. Experimental results show our MARL approach improves sample efficiency by 30-300x over standard single-agent RL, achieving up to 32.61x latency reduction and 16.45x energy-delay product (EDP) reduction under iso-sample conditions.
Related papers
- Online Training and Pruning of Deep Reinforcement Learning Networks [0.0]
Scaling deep neural networks (NN) of reinforcement learning (RL) algorithms has been shown to enhance performance when feature extraction networks are used.<n>We propose an approach to integrate simultaneous training and pruning within advanced RL methods.
arXiv Detail & Related papers (2025-07-16T07:17:41Z) - How to Train Your LLM Web Agent: A Statistical Diagnosis [102.04125085041473]
We present the first statistically grounded study on compute allocation for LLM web-agent post-training.<n>Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT) and on-policy reinforcement learning.<n>Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++.
arXiv Detail & Related papers (2025-07-05T17:12:33Z) - Do We Truly Need So Many Samples? Multi-LLM Repeated Sampling Efficiently Scales Test-Time Compute [54.22256089592864]
This paper presents a simple, effective, and cost-efficient strategy to improve LLM performance by scaling test-time compute.<n>Our strategy builds upon the repeated-sampling-then-voting framework, with a novel twist: incorporating multiple models, even weaker ones, to leverage their complementary strengths.
arXiv Detail & Related papers (2025-04-01T13:13:43Z) - Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs [47.600901884970845]
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks.<n>In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model.<n>We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate.
arXiv Detail & Related papers (2024-12-18T13:50:31Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.<n>We present MENTOR, a method that improves both the architecture and optimization of RL agents.<n>MenTOR outperforms state-of-the-art methods across three simulation benchmarks and achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Value-Based Deep Multi-Agent Reinforcement Learning with Dynamic Sparse Training [38.03693752287459]
Multi-agent Reinforcement Learning (MARL) relies on neural networks with numerous parameters in multi-agent scenarios.
This paper proposes the utilization of dynamic sparse training (DST), a technique proven effective in deep supervised learning tasks.
We introduce an innovative Multi-Agent Sparse Training (MAST) framework aimed at simultaneously enhancing the reliability of learning targets and the rationality of sample distribution.
arXiv Detail & Related papers (2024-09-28T15:57:24Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.