MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning
- URL: http://arxiv.org/abs/2410.14972v3
- Date: Fri, 04 Jul 2025 08:13:58 GMT
- Title: MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning
- Authors: Suning Huang, Zheyu Zhang, Tianhai Liang, Yihan Xu, Zhehao Kou, Chenhao Lu, Guowei Xu, Zhengrong Xue, Huazhe Xu,
- Abstract summary: Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.<n>We present MENTOR, a method that improves both the architecture and optimization of RL agents.<n>MenTOR outperforms state-of-the-art methods across three simulation benchmarks and achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks.
- Score: 17.437573206368494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone and introduces a task-oriented perturbation mechanism. MENTOR outperforms state-of-the-art methods across three simulation benchmarks and achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks, significantly surpassing the 32% success rate of the strongest existing model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at https://suninghuang19.github.io/mentor_page/.
Related papers
- Multi-Agent Reinforcement Learning for Sample-Efficient Deep Neural Network Mapping [54.65536245955678]
We present a decentralized multi-agent reinforcement learning (MARL) framework designed to overcome the challenge of sample inefficiency.<n>We introduce an agent clustering algorithm that assigns similar mapping parameters to the same agents based on correlation analysis.<n> Experimental results show our MARL approach improves sample efficiency by 30-300x over standard single-agent RL.
arXiv Detail & Related papers (2025-07-22T05:51:07Z) - Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.<n>Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.<n>We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
arXiv Detail & Related papers (2024-08-07T19:30:08Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - RLingua: Improving Reinforcement Learning Sample Efficiency in Robotic Manipulations With Large Language Models [16.963228633341792]
Reinforcement learning (RL) has demonstrated its capability in solving various tasks but is notorious for its low sample efficiency.
We propose RLingua, a framework that can leverage the internal knowledge of large language models (LLMs) to reduce the sample complexity of RL in robotic manipulations.
arXiv Detail & Related papers (2024-03-11T04:13:26Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
We propose Multimodal Contrastive Unsupervised Reinforcement Learning (M2CURL)
Our approach employs a novel multimodal self-supervised learning technique that learns efficient representations and contributes to faster convergence of RL algorithms.
We evaluate M2CURL on the Tactile Gym 2 simulator and we show that it significantly enhances the learning efficiency in different manipulation tasks.
arXiv Detail & Related papers (2024-01-30T14:09:35Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models.
Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions.
Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation.
arXiv Detail & Related papers (2023-10-04T07:56:42Z) - Primitive Skill-based Robot Learning from Human Evaluative Feedback [28.046559859978597]
Reinforcement learning algorithms face challenges when dealing with long-horizon robot manipulation tasks in real-world environments.
We propose a novel framework, SEED, which leverages two approaches: reinforcement learning from human feedback (RLHF) and primitive skill-based reinforcement learning.
Our results show that SEED significantly outperforms state-of-the-art RL algorithms in sample efficiency and safety.
arXiv Detail & Related papers (2023-07-28T20:48:30Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Task-Agnostic Continual Reinforcement Learning: Gaining Insights and
Overcoming Challenges [27.474011433615317]
Continual learning (CL) enables the development of models and agents that learn from a sequence of tasks.
We investigate the factors that contribute to the performance differences between task-agnostic CL and multi-task (MTL) agents.
arXiv Detail & Related papers (2022-05-28T17:59:00Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.