Quality Text, Robust Vision: The Role of Language in Enhancing Visual Robustness of Vision-Language Models
- URL: http://arxiv.org/abs/2507.16257v1
- Date: Tue, 22 Jul 2025 06:13:30 GMT
- Title: Quality Text, Robust Vision: The Role of Language in Enhancing Visual Robustness of Vision-Language Models
- Authors: Futa Waseda, Saku Sugawara, Isao Echizen,
- Abstract summary: Existing adversarial training methods for robust fine-tuning largely overlook the role of language in enhancing visual robustness.<n>We propose Quality Text-guided Adversarial Fine-Tuning (QT-AFT), which leverages high-quality captions during training to guide adversarial examples away from diverse semantics present in images.<n> QT-AFT achieves state-of-the-art zero-shot adversarial robustness and clean accuracy, evaluated across 16 zero-shot datasets.
- Score: 17.259725776748482
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Defending pre-trained vision-language models (VLMs), such as CLIP, against adversarial attacks is crucial, as these models are widely used in diverse zero-shot tasks, including image classification. However, existing adversarial training (AT) methods for robust fine-tuning largely overlook the role of language in enhancing visual robustness. Specifically, (1) supervised AT methods rely on short texts (e.g., class labels) to generate adversarial perturbations, leading to overfitting to object classes in the training data, and (2) unsupervised AT avoids this overfitting but remains suboptimal against practical text-guided adversarial attacks due to its lack of semantic guidance. To address these limitations, we propose Quality Text-guided Adversarial Fine-Tuning (QT-AFT), which leverages high-quality captions during training to guide adversarial examples away from diverse semantics present in images. This enables the visual encoder to robustly recognize a broader range of image features even under adversarial noise, thereby enhancing robustness across diverse downstream tasks. QT-AFT overcomes the key weaknesses of prior methods -- overfitting in supervised AT and lack of semantic awareness in unsupervised AT -- achieving state-of-the-art zero-shot adversarial robustness and clean accuracy, evaluated across 16 zero-shot datasets. Furthermore, our comprehensive study uncovers several key insights into the role of language in enhancing vision robustness; for example, describing object properties in addition to object names further enhances zero-shot robustness. Our findings point to an urgent direction for future work -- centering high-quality linguistic supervision in robust visual representation learning.
Related papers
- Robust-LLaVA: On the Effectiveness of Large-Scale Robust Image Encoders for Multi-modal Large Language Models [26.656858396343726]
Multi-modal Large Language Models (MLLMs) excel in vision-language tasks but remain vulnerable to visual adversarial perturbations.<n>Existing methods seek to mitigate these risks by applying constrained adversarial fine-tuning to CLIP vision encoders on ImageNet-scale data.<n>We explore an alternative approach of leveraging existing vision classification models that have been adversarially pre-trained on large-scale data.
arXiv Detail & Related papers (2025-02-03T17:59:45Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Few-Shot Adversarial Prompt Learning on Vision-Language Models [62.50622628004134]
The vulnerability of deep neural networks to imperceptible adversarial perturbations has attracted widespread attention.
Previous efforts achieved zero-shot adversarial robustness by aligning adversarial visual features with text supervision.
We propose a few-shot adversarial prompt framework where adapting input sequences with limited data makes significant adversarial robustness improvement.
arXiv Detail & Related papers (2024-03-21T18:28:43Z) - Language-Driven Visual Consensus for Zero-Shot Semantic Segmentation [114.72734384299476]
We propose a Language-Driven Visual Consensus (LDVC) approach, fostering improved alignment of semantic and visual information.
We leverage class embeddings as anchors due to their discrete and abstract nature, steering vision features toward class embeddings.
Our approach significantly boosts the capacity of segmentation models for unseen classes.
arXiv Detail & Related papers (2024-03-13T11:23:55Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot Vision-Language Understanding [88.24517460894634]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.<n>Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - Language-Driven Anchors for Zero-Shot Adversarial Robustness [25.160195547250655]
We propose a Language-driven, Anchor-based Adversarial Training strategy.
By leveraging the semantic consistency of the text encoders, LAAT aims to enhance the adversarial robustness of the image model.
We show that LAAT significantly improves zero-shot adversarial robustness over state-of-the-art methods.
arXiv Detail & Related papers (2023-01-30T17:34:43Z) - Understanding Zero-Shot Adversarial Robustness for Large-Scale Models [31.295249927085475]
We identify and explore the problem of emphadapting large-scale models for zero-shot adversarial robustness.
We propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning.
Our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets.
arXiv Detail & Related papers (2022-12-14T04:08:56Z) - Disentangled Text Representation Learning with Information-Theoretic
Perspective for Adversarial Robustness [17.5771010094384]
Adversarial vulnerability remains a major obstacle to constructing reliable NLP systems.
Recent work argues the adversarial vulnerability of the model is caused by the non-robust features in supervised training.
In this paper, we tackle the adversarial challenge from the view of disentangled representation learning.
arXiv Detail & Related papers (2022-10-26T18:14:39Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.