論文の概要: Perovskite-R1: A Domain-Specialized LLM for Intelligent Discovery of Precursor Additives and Experimental Design
- arxiv url: http://arxiv.org/abs/2507.16307v1
- Date: Tue, 22 Jul 2025 07:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.009327
- Title: Perovskite-R1: A Domain-Specialized LLM for Intelligent Discovery of Precursor Additives and Experimental Design
- Title(参考訳): Perovskite-R1:前駆体の知的発見と実験設計のためのドメイン特化LDM
- Authors: Xin-De Wang, Zhi-Rui Chen, Peng-Jie Guo, Ze-Feng Gao, Cheng Mu, Zhong-Yi Lu,
- Abstract要約: ペロブスカイト太陽電池 (PSCs) は、次世代の太陽電池技術の主要な候補として急速に出現している。
長期の安定、環境の持続可能性、スケーラブルな製造といった課題は、商業化を妨げ続けている。
プリキュラ付加工学はPSCの性能と耐久性を向上させることでこれらの問題に対処することを約束している。
本稿では,PSC前駆体の発見と設計に適した高度な推論機能を備えた特殊大言語モデル(LLM)であるPerovskite-R1を紹介する。
- 参考スコア(独自算出の注目度): 5.378023608941598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perovskite solar cells (PSCs) have rapidly emerged as a leading contender in next-generation photovoltaic technologies, owing to their exceptional power conversion efficiencies and advantageous material properties. Despite these advances, challenges such as long-term stability, environmental sustainability, and scalable manufacturing continue to hinder their commercialization. Precursor additive engineering has shown promise in addressing these issues by enhancing both the performance and durability of PSCs. However, the explosive growth of scientific literature and the complex interplay of materials, processes, and device architectures make it increasingly difficult for researchers to efficiently access, organize, and utilize domain knowledge in this rapidly evolving field. To address this gap, we introduce Perovskite-R1, a specialized large language model (LLM) with advanced reasoning capabilities tailored for the discovery and design of PSC precursor additives. By systematically mining and curating 1,232 high-quality scientific publications and integrating a comprehensive library of 33,269 candidate materials, we constructed a domain-specific instruction-tuning dataset using automated question-answer generation and chain-of-thought reasoning. Fine-tuning the QwQ-32B model on this dataset resulted in Perovskite-R1, which can intelligently synthesize literature insights and generate innovative and practical solutions for defect passivation and the selection of precursor additives. Experimental validation of several model-proposed strategies confirms their effectiveness in improving material stability and performance. Our work demonstrates the potential of domain-adapted LLMs in accelerating materials discovery and provides a closed-loop framework for intelligent, data-driven advancements in perovskite photovoltaic research.
- Abstract(参考訳): ペロブスカイト太陽電池(PSC)は、異例の電力変換効率と有利な材料特性のため、次世代の太陽光発電技術の主要な候補として急速に浮上している。
これらの進歩にもかかわらず、長期的な安定性、環境持続可能性、スケーラブルな製造といった課題は商業化を妨げ続けている。
プリキュラ付加工学はPSCの性能と耐久性を向上させることでこれらの問題に対処することを約束している。
しかし、科学文献の爆発的な成長と材料、プロセス、デバイスアーキテクチャの複雑な相互作用により、研究者がこの急速に発展する分野において、ドメイン知識に効率的にアクセスし、組織化し、活用することがますます困難になる。
このギャップに対処するために,PSC前駆体の発見と設計に適した高度な推論機能を備えた特殊大言語モデル(LLM)であるPerovskite-R1を導入する。
1,232の高品質な学術出版物を体系的にマイニング・キュレートし,33,269の候補資料からなる総合的なライブラリを統合することにより,自動質問応答生成とチェーンオブ思考推論を用いたドメイン固有指導データセットを構築した。
このデータセット上でQwQ-32Bモデルを微調整した結果、ペロブスカイト-R1は文献の洞察をインテリジェントに合成し、欠陥緩和と前駆体添加物の選択のための革新的で実用的なソリューションを生成することができた。
いくつかのモデルが提案する戦略の実験的検証は、材料安定性と性能を改善する上での有効性を確認している。
我々の研究は、材料発見の加速におけるドメイン適応型LLMの可能性を示し、ペロブスカイト型太陽光発電研究におけるインテリジェントでデータ駆動の進展のためのクローズドループフレームワークを提供する。
関連論文リスト
- Expert-Guided LLM Reasoning for Battery Discovery: From AI-Driven Hypothesis to Synthesis and Characterization [47.97016882216093]
大型言語モデル(LLM)は複雑な問題に対処するためにチェーン・オブ・シント(CoT)技術を利用する。
ドメイン知識を統合した新しいエージェントフレームワークであるChatBatteryを,材料設計におけるより効果的な推論に向けて導入する。
新規リチウムイオン電池陰極材料3種を同定,合成,特性評価し,28.8%,25.2%,18.5%の実用能力向上を実現した。
論文 参考訳(メタデータ) (2025-07-21T23:46:11Z) - Materials Generation in the Era of Artificial Intelligence: A Comprehensive Survey [54.40267149907223]
材料は現代社会の基礎であり、エネルギー、エレクトロニクス、医療、交通、インフラの進歩を支えている。
高度に調整された特性を持つ新しい材料を発見・設計する能力は、世界的課題の解決に不可欠である。
データ駆動生成モデルは、事前定義された特性要件を満たす新しい材料を直接作成することによって、材料設計のための強力なツールを提供する。
論文 参考訳(メタデータ) (2025-05-22T08:33:21Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
知識駆動発見のために、実験データと事前のドメイン知識を統合することが不可欠である。
本稿では、高分解能走査透過電子顕微鏡(STEM)データと大規模言語モデル(LLM)からの洞察を組み合わせることで、このアプローチを実証する。
SmドープBiFeO3(SmBFO)におけるChatGPTをドメイン固有文献に微調整することにより、構造的、化学的、分極的自由度の間の因果関係をマッピングするDAG(Directed Acyclic Graphs)の隣接行列を構築する。
論文 参考訳(メタデータ) (2025-03-18T02:14:49Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,タスク固有の精度を向上するファインチューニング,倫理的コヒーレンスと人間の嗜好との整合性を保証するアライメント,報酬設計の課題によらず多段階の推論を進める推論,統合と適応の5つのパラダイムを体系的に追跡したPoLMの総合的な調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge [6.500470477634259]
本研究は,実践的でデータ駆動型資源を提供することで,材料科学コミュニティを支援することを目的としている。
オープンアクセス文献から17Kのエキスパートが検証した合成レシピの包括的データセットを収集した。
AlchemicalBenchは、合成予測に適用された大規模言語モデルの研究をサポートするエンドツーエンドフレームワークを提供する。
論文 参考訳(メタデータ) (2025-02-23T06:16:23Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Exploring Augmentation and Cognitive Strategies for AI based Synthetic Personae [1.0742675209112622]
本稿では、ゼロショットジェネレータではなく、データ拡張システムとして大規模言語モデル(LLM)を使用することを提唱する。
LLM応答をガイドする堅牢な認知・記憶フレームワークの開発を提案する。
初期の調査では、データの豊かさ、エピソード記憶、自己回帰技術が合成人格の信頼性を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-16T20:22:12Z) - AIMS-EREA -- A framework for AI-accelerated Innovation of Materials for
Sustainability -- for Environmental Remediation and Energy Applications [0.0]
AIMS-EREAは、マテリアルサイエンス理論のベストをジェネレーティブAIのパワーと組み合わせる新しいフレームワークです。
これはまた、有害な残留物や反応の副産物の生成の可能性を排除するのに役立つ。
論文 参考訳(メタデータ) (2023-11-18T12:35:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。