Physics-Driven Neural Network for Solving Electromagnetic Inverse Scattering Problems
- URL: http://arxiv.org/abs/2507.16321v1
- Date: Tue, 22 Jul 2025 08:04:50 GMT
- Title: Physics-Driven Neural Network for Solving Electromagnetic Inverse Scattering Problems
- Authors: Yutong Du, Zicheng Liu, Bazargul Matkerim, Changyou Li, Yali Zong, Bo Qi, Jingwei Kou,
- Abstract summary: A new solution is proposed for inverse scattering problems (ISPs) using a physics-driven neural network (PDNN)<n>PDNN is trained only requiring the input of collected scattered fields and the computation of scattered fields corresponding to predicted solutions.<n>Results demonstrate that the proposed scheme has high reconstruction accuracy and strong stability, even when dealing with composite lossy scatterers.
- Score: 7.564377962527698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning-based methods have been proposed for solving inverse scattering problems (ISPs), but most of them heavily rely on data and suffer from limited generalization capabilities. In this paper, a new solving scheme is proposed where the solution is iteratively updated following the updating of the physics-driven neural network (PDNN), the hyperparameters of which are optimized by minimizing the loss function which incorporates the constraints from the collected scattered fields and the prior information about scatterers. Unlike data-driven neural network solvers, PDNN is trained only requiring the input of collected scattered fields and the computation of scattered fields corresponding to predicted solutions, thus avoids the generalization problem. Moreover, to accelerate the imaging efficiency, the subregion enclosing the scatterers is identified. Numerical and experimental results demonstrate that the proposed scheme has high reconstruction accuracy and strong stability, even when dealing with composite lossy scatterers.
Related papers
- Representation and Regression Problems in Neural Networks: Relaxation, Generalization, and Numerics [5.915970073098098]
We address three non-dimensional optimization problems associated with training shallow neural networks (NNs)<n>We convexify these problems and representation, applying a representer gradient to prove the absence relaxation gaps.<n>We analyze the impact of key parameters on these bounds, propose optimal choices.<n>For high-dimensional datasets, we propose a sparsification algorithm that, combined with gradient descent, yields effective solutions.
arXiv Detail & Related papers (2024-12-02T15:40:29Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
We propose a fully unsupervised approach, requiring no training data, to estimate finite difference solutions for PDEs directly via small linear convolutional neural networks.
Our proposed approach uses substantially fewer parameters than similar finite difference-based approaches while also demonstrating comparable accuracy to the true solution for several selected elliptic and parabolic problems.
arXiv Detail & Related papers (2023-11-01T03:15:10Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A unified scalable framework for causal sweeping strategies for
Physics-Informed Neural Networks (PINNs) and their temporal decompositions [22.514769448363754]
Training challenges in PINNs and XPINNs for time-dependent PDEs are discussed.
We propose a new stacked-decomposition method that bridges the gap between PINNs and XPINNs.
We also formulate a new time-sweeping collocation point algorithm inspired by the previous PINNs causality.
arXiv Detail & Related papers (2023-02-28T01:19:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Physics-guided Loss Functions Improve Deep Learning Performance in
Inverse Scattering [13.529767949868248]
Deep neural network (DNN) techniques have been successfully applied on electromagnetic inverse scattering problems.
We show how important physical phenomena cannot be effectively incorporated in the training process.
We propose new designs of loss functions which incorporate multiple-scattering based near-field quantities.
arXiv Detail & Related papers (2021-11-13T16:36:23Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.