Sparse-View 3D Reconstruction: Recent Advances and Open Challenges
- URL: http://arxiv.org/abs/2507.16406v1
- Date: Tue, 22 Jul 2025 09:57:28 GMT
- Title: Sparse-View 3D Reconstruction: Recent Advances and Open Challenges
- Authors: Tanveer Younis, Zhanglin Cheng,
- Abstract summary: Sparse-view 3D reconstruction is essential for applications in which dense image acquisition is impractical.<n>This survey reviews the latest advances in neural implicit models and explicit point-cloud-based approaches.<n>We analyze how geometric regularization, explicit shape modeling, and generative inference are used to mitigate artifacts.
- Score: 0.8583178253811411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view 3D reconstruction is essential for applications in which dense image acquisition is impractical, such as robotics, augmented/virtual reality (AR/VR), and autonomous systems. In these settings, minimal image overlap prevents reliable correspondence matching, causing traditional methods, such as structure-from-motion (SfM) and multiview stereo (MVS), to fail. This survey reviews the latest advances in neural implicit models (e.g., NeRF and its regularized versions), explicit point-cloud-based approaches (e.g., 3D Gaussian Splatting), and hybrid frameworks that leverage priors from diffusion and vision foundation models (VFMs).We analyze how geometric regularization, explicit shape modeling, and generative inference are used to mitigate artifacts such as floaters and pose ambiguities in sparse-view settings. Comparative results on standard benchmarks reveal key trade-offs between the reconstruction accuracy, efficiency, and generalization. Unlike previous reviews, our survey provides a unified perspective on geometry-based, neural implicit, and generative (diffusion-based) methods. We highlight the persistent challenges in domain generalization and pose-free reconstruction and outline future directions for developing 3D-native generative priors and achieving real-time, unconstrained sparse-view reconstruction.
Related papers
- Review of Feed-forward 3D Reconstruction: From DUSt3R to VGGT [10.984522161856955]
3D reconstruction is a cornerstone technology for numerous applications, including augmented/virtual reality, autonomous driving, and robotics.<n>Deep learning has catalyzed a paradigm shift in 3D reconstruction.<n>New models employ a unified deep network to jointly infer camera poses and dense geometry directly from an Unconstrained set of images in a single forward pass.
arXiv Detail & Related papers (2025-07-11T09:41:54Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.<n>We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.<n>Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis [25.898616784744377]
Given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D.<n>We propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them.
arXiv Detail & Related papers (2024-12-04T18:59:24Z) - Object Gaussian for Monocular 6D Pose Estimation from Sparse Views [4.290993205307184]
We introduce SGPose, a novel framework for sparse view object pose estimation using Gaussian-based methods.
Given as few as ten views, SGPose generates a geometric-aware representation by starting with a random cuboid.
Experiments on typical benchmarks, especially on the Occlusion LM-O dataset, demonstrate that SGPose outperforms existing methods even under sparse view constraints.
arXiv Detail & Related papers (2024-09-04T10:03:11Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems.
This paper addresses two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one.
Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
arXiv Detail & Related papers (2022-07-22T10:05:36Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.