論文の概要: Adaptive Multi-task Learning for Multi-sector Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2507.16433v1
- Date: Tue, 22 Jul 2025 10:24:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.071984
- Title: Adaptive Multi-task Learning for Multi-sector Portfolio Optimization
- Title(参考訳): マルチセクタポートフォリオ最適化のための適応型マルチタスク学習
- Authors: Qingliang Fan, Ruike Wu, Yanrong Yang,
- Abstract要約: 本研究では,複数の分野にまたがる主要な時間空間間の関連性を定量化し,学習する,データ適応型マルチタスク学習手法を提案する。
このアプローチは、複数の因子モデルの同時推定を改善するだけでなく、マルチセクタポートフォリオの最適化も強化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate transfer of information across multiple sectors to enhance model estimation is both significant and challenging in multi-sector portfolio optimization involving a large number of assets in different classes. Within the framework of factor modeling, we propose a novel data-adaptive multi-task learning methodology that quantifies and learns the relatedness among the principal temporal subspaces (spanned by factors) across multiple sectors under study. This approach not only improves the simultaneous estimation of multiple factor models but also enhances multi-sector portfolio optimization, which heavily depends on the accurate recovery of these factor models. Additionally, a novel and easy-to-implement algorithm, termed projection-penalized principal component analysis, is developed to accomplish the multi-task learning procedure. Diverse simulation designs and practical application on daily return data from Russell 3000 index demonstrate the advantages of multi-task learning methodology.
- Abstract(参考訳): モデル推定を強化するために複数の分野にまたがる情報の正確な転送は、異なるクラスの多数の資産を含むマルチセクタポートフォリオ最適化において重要かつ困難である。
因子モデリングの枠組みの中では,複数の分野にまたがる主要な時間空間間の関連性を定量化し,学習する,データ適応型マルチタスク学習手法を提案する。
このアプローチは、複数の因子モデルの同時推定を改善するだけでなく、これらの因子モデルの正確な回復に大きく依存するマルチセクタポートフォリオの最適化も強化する。
さらに,プロジェクションペンタライズされた主成分分析と呼ばれる,新規で実装が容易なアルゴリズムを開発し,マルチタスク学習を実現する。
ラッセル3000指数からの日次回帰データに対する多タスク学習手法の利点を実証する。
関連論文リスト
- Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
モデルマージは、複数のエキスパートモデルを単一のモデルにまとめることを目的としており、ストレージとサービスコストを削減している。
これまでの研究は主に、コードと数学のタスクに視覚分類モデルやLLM(Large Language Models)を統合することに焦点を当ててきた。
本稿では,VQA,Geometry,Chart,OCR,Gundingといった複数のタスクを含むMLLMのモデルマージベンチマークを紹介する。
論文 参考訳(メタデータ) (2025-05-26T12:23:14Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
我々は,マルチタスク最適化問題を正規化手法として定式化し,マルチタスク学習情報を活用することを可能とする。
線形モデルの文脈におけるマルチタスク最適化のための閉形式解を導出する。
論文 参考訳(メタデータ) (2024-06-14T17:59:25Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
復号法は、次世代の予測器から実用的なタスク解決器に言語モデルを変換する上で、必須の役割を果たす。
本稿では,大規模言語モデルの文脈における様々な復号法を包括的かつ多面的に分析する。
その結果,復号法の性能は特にタスク依存的であり,アライメント,モデルサイズ,量子化などの要因に影響されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-10T11:14:53Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
様々な情報源からの要約統計を利用した柔軟なマルチタスク学習フレームワークを提案する。
また,Lepskiの手法の変種に基づく適応パラメータ選択手法を提案する。
この研究は、さまざまな領域にわたる関連するモデルをトレーニングするための、より柔軟なツールを提供する。
論文 参考訳(メタデータ) (2023-07-05T15:55:23Z) - Body Segmentation Using Multi-task Learning [1.0832844764942349]
本稿では,3つのタスクを伴い,人間のセグメンテーション/パーシングのための新しいマルチタスクモデルを提案する。
提案された--Pose--DensePoseモデル(略してSPD)の背景にある主な考え方は、異なるが関連するタスク間で知識を共有することによって、より良いセグメンテーションモデルを学ぶことである。
モデルの性能は、LIPおよびATRデータセットの厳密な実験により分析され、最近の(最先端)マルチタスクボディセグメンテーションモデルと比較される。
論文 参考訳(メタデータ) (2022-12-13T13:06:21Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
本稿では,多種多様なモダリティを含む高モダリティシナリオに対する効率的な表現学習について検討する。
単一のモデルであるHighMMTは、テキスト、画像、オーディオ、ビデオ、センサー、プロプレセプション、スピーチ、時系列、セット、テーブル)と5つの研究領域から15のタスクをスケールする。
論文 参考訳(メタデータ) (2022-03-02T18:56:20Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Deep Multistage Multi-Task Learning for Quality Prediction of Multistage
Manufacturing Systems [7.619217846525994]
統合型エンドツーエンド学習フレームワークにおいて,すべての出力検出変数を共同で予測する,深層多段マルチタスク学習フレームワークを提案する。
我々の数値研究と実事例研究では,新しいモデルが多くのベンチマーク法よりも優れた性能を持つことを示した。
論文 参考訳(メタデータ) (2021-05-17T22:09:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。